

MATHEMATICS EXTENSION 1 YEAR 12 COURSE

Name:

Initial version by H. Lam, July 2012 (Binomial Theorem)/August 2014 (Combinatorics). Updated by A. Sun with various HSC questions. Last updated February 12, 2024. Various corrections by students & members of the Department of Mathematics at North Sydney Boys and Normanhurst Boys High School.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under 🕝 CC BY 2.0.

Symbols used Syllabus outcomes addressed A Beware! Heed warning. ME11-5 uses concepts of permutations and combinations to solve problems involving counting or ordering kĎ Provided on NESA Reference Sheet Syllabus subtopics Facts/formulae to memorise. ME-A1 Working with Combinatorics Mathematics Extension 1 content. Literacy: note new word/phrase. Further reading/exercises to enrich your understanding and application of this topic. Syllabus specified content ହ Facts/formulae to understand, as opposed to blatant memorisation. $\mathbb N \,$ the set of natural numbers \mathbb{Z} the set of integers $\mathbb Q\,$ the set of rational numbers \mathbb{R} the set of real numbers \forall for all

Gentle reminder

- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *CambridgeMATHS Year 11 Extension 1* (Pender, Sadler, Ward, Dorofaeff, & Shea, 2019) will be completed at the discretion of your teacher.

• Remember to copy the question into your exercise book!

Contents

Ι	I Pascal's Triangle & the Binomial Theorem												
1	1	6 9 11 12											
2	 2.1 Unrolling factorials	15 15 16 19											
3	3.1 Substitution 3.2 Differentiation	23 23 27 34											
Π	Combinatorics	37											
4	 4.1 Unrestricted cases – multiplication principle	38 39 40 43 47 49											
5	5.1Definitions5.2Other conditions	53 53 55 63											
6	6.1Probability with permutations6.1.1Other conditions6.1.2Identical elements	66 66 66 68 68											

	6.2	Probability with combinations	70
7	The 7.1 7.2	Pigeonhole Principle Problem definition Examples 7.2.1 Division with remainder 7.2.2 Additional questions	76 76 77 77 82
8	Past 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	HSC Questions 2012 Extension 1 HSC 2019 Extension 1 HSC 2017 Extension 1 HSC 2018 Extension 1 HSC 2017 Extension 1 HSC 2017 Extension 1 HSC 2017 Extension 1 HSC 2018 Extension 1 HSC 2019 Extension 1 HSC 1991 Extension 1 HSC 1993 Extension 1 HSC 1992 Extension 1 HSC 2000 Extension 1 HSC	 83 83 83 84 84 84 85 85 85
III	Le	egacy syllabus content	86
A	A.1 A.2	Binomial Theorem Integration	88 88 91 95
в	Con B.1	$\begin{array}{l} \textbf{abinatorics} \\ \textbf{(x2)} \\ \textbf{Harder 3 Unit problems involving probability/combinatorics } \end{array}$	97 97
Re	ferer	ices	107

Part I

Pascal's Triangle & the Binomial Theorem

Section 1

Expansion of $(a+b)^n$

Learning Goal(s)

E Knowledge

What is the Binomial Theorem

Skills Use Pascal's Triangle and the Binomial Theorem

Vunderstanding

 $(x+1)^4$

The difference between terms, coefficients and flexibility on which term to increase/decrease the indices

${\ensuremath{\overline{\mathrm{S}}}}$ By the end of this section am I able to:

17.1 Expand $(x+y)^n$ for small positive integers n.

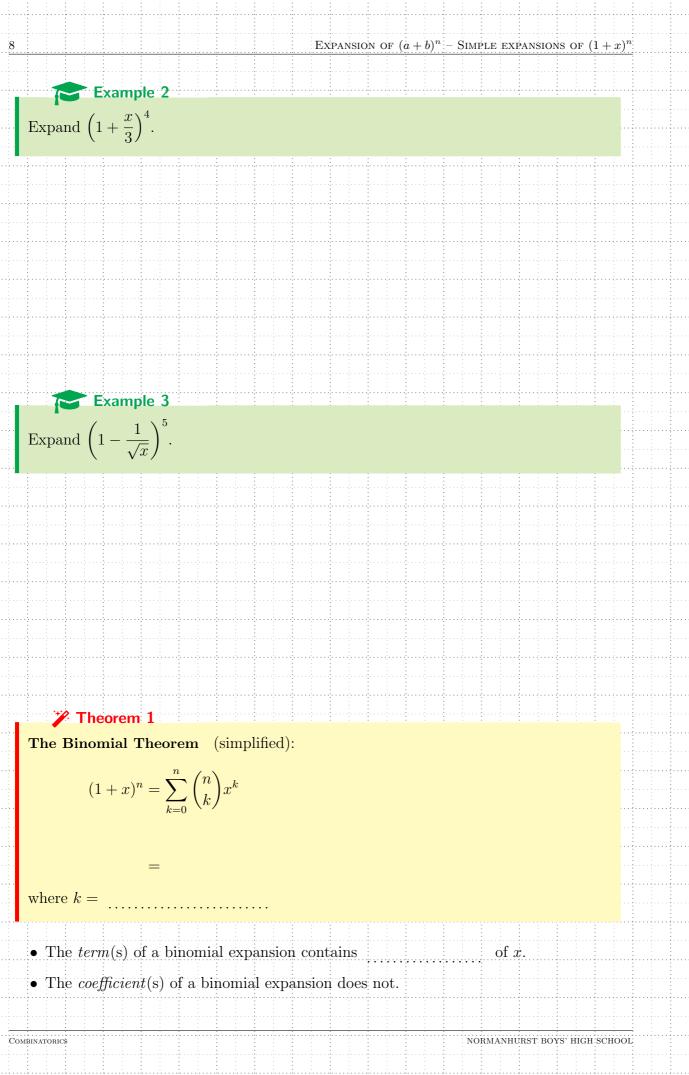
17.2 Use Pascal's triangle to perform simple binomial expansions.

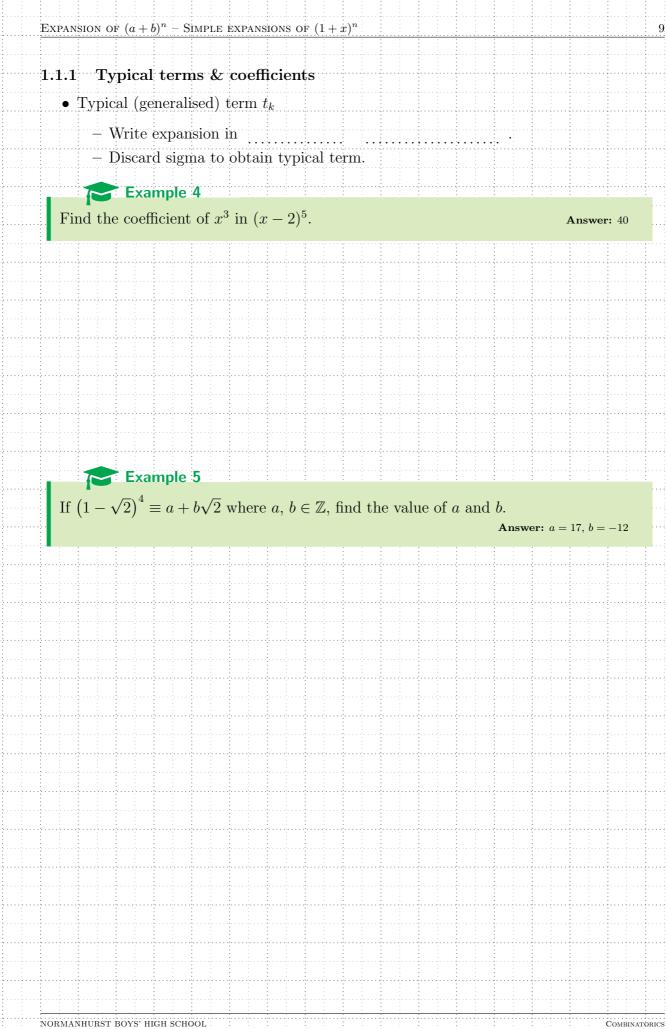
17.3 Determine values of unknown coefficients given information about an expansion.

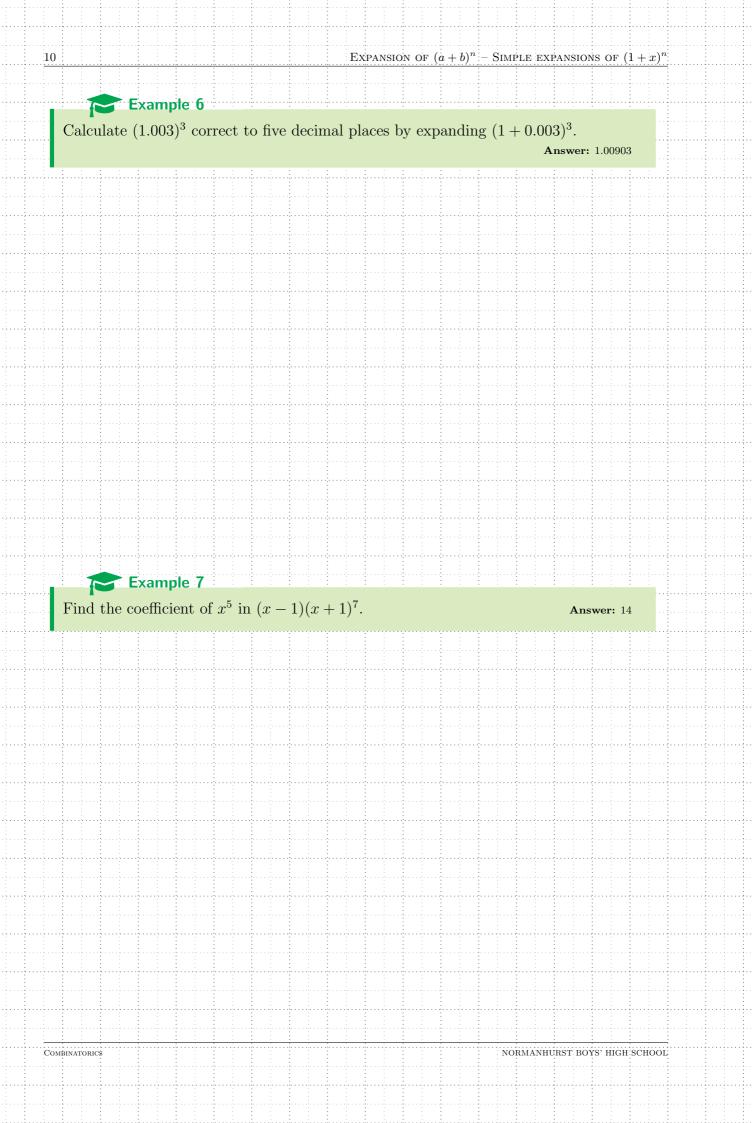
17.4 Develop reasoning that the binomial coefficients are given by $\binom{n}{r}$ $\binom{n}{C_r}$.

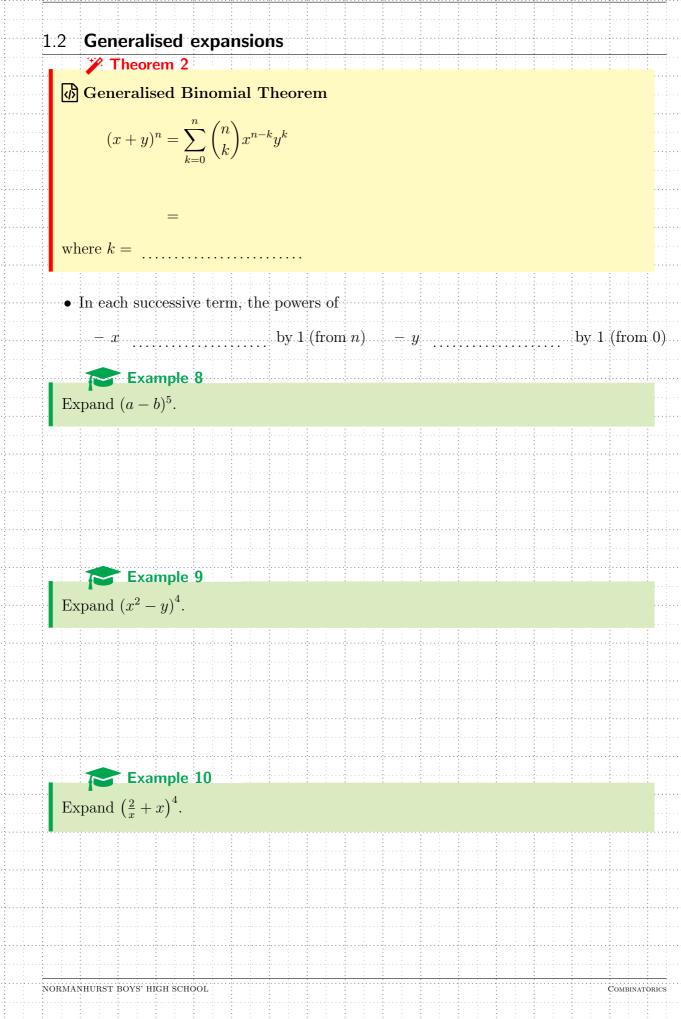
1.1 Simple expansions of $(1+x)^n$

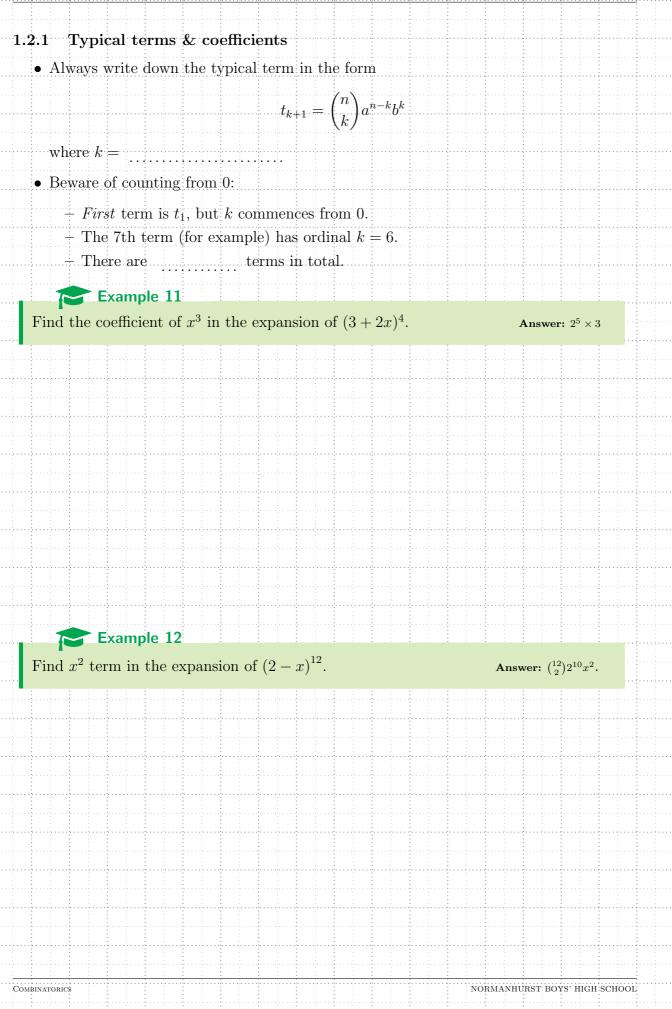
- Expand:
- * $(x+1)^2$

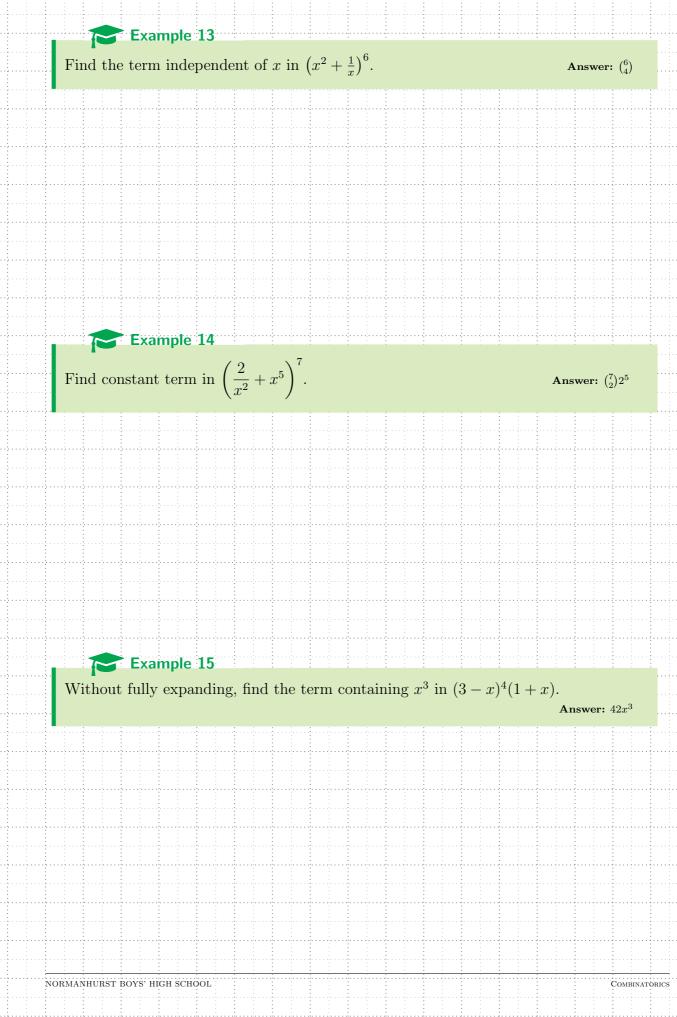

Coefficients: Coefficients: Coefficients:

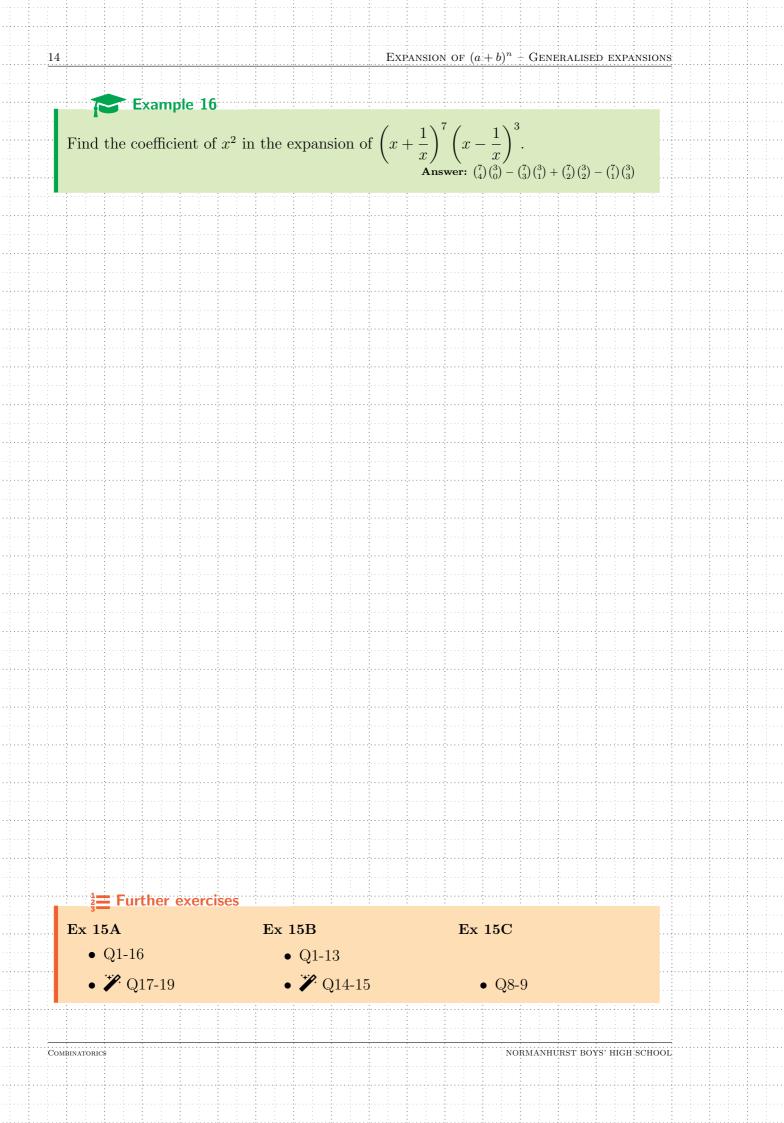

* $(x+1)^3$

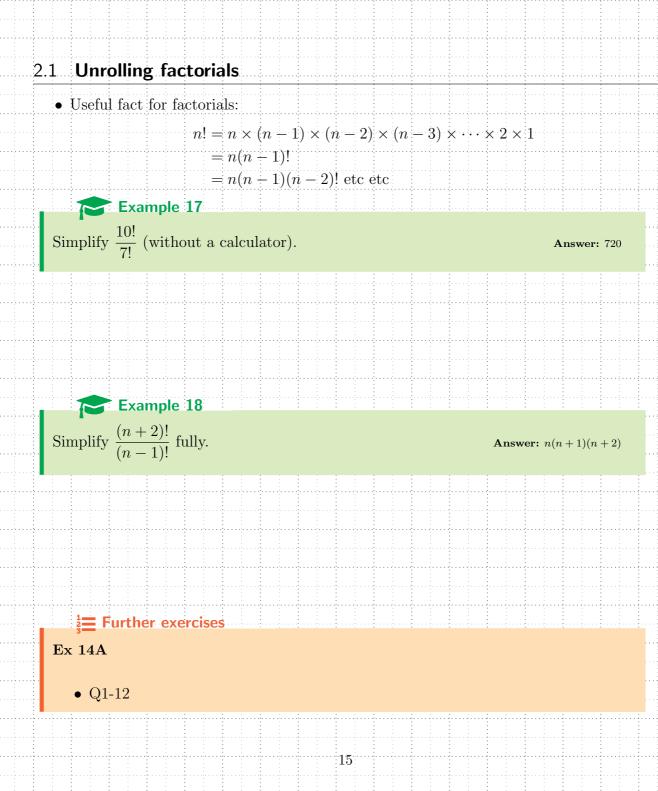

• Pascal's Triangle:


• The k-th in the expansion of $(x+1)^n$ corresponds to values in the *n*-th row of Pascal's triangle.


Example 1 Expand $(1 + x)^6$.







Section 2

Factorial notation

Two polynomials are equal iff all of

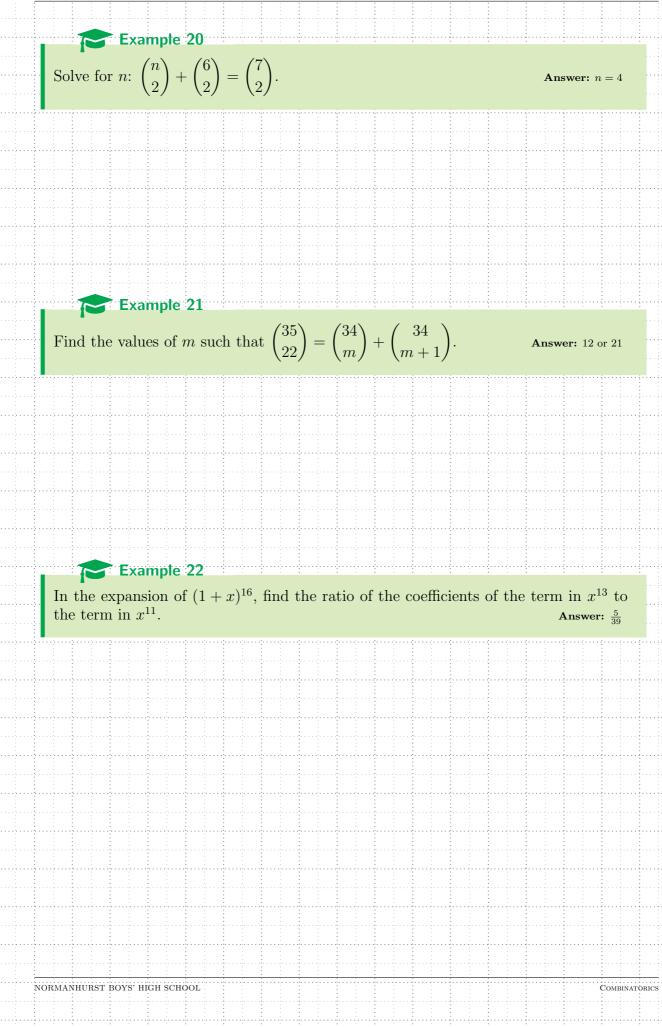
their coefficients are equal, i.e.

2.2 Properties of binomial coefficients • Definition: $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ • Property of term below: $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$

for $1 \le r \le n-1$.

Proof

- Consider $(1+x)^n$. $(1+x)^n = (1+x)(1+x)^{n-1}$


 $\binom{n}{r}$ is the coefficient of the term containing x^r the expansion of $(1 + x)^n$. Hence examine the term containing x^r on both sides:

Example 19

Combinatorics

Find the value of $\binom{16}{5}$, leaving the answer factored as primes. Answer: $2^4 \times 3 \times 7 \times 13$

NORMANHURST BOYS' HIGH SCHOOL

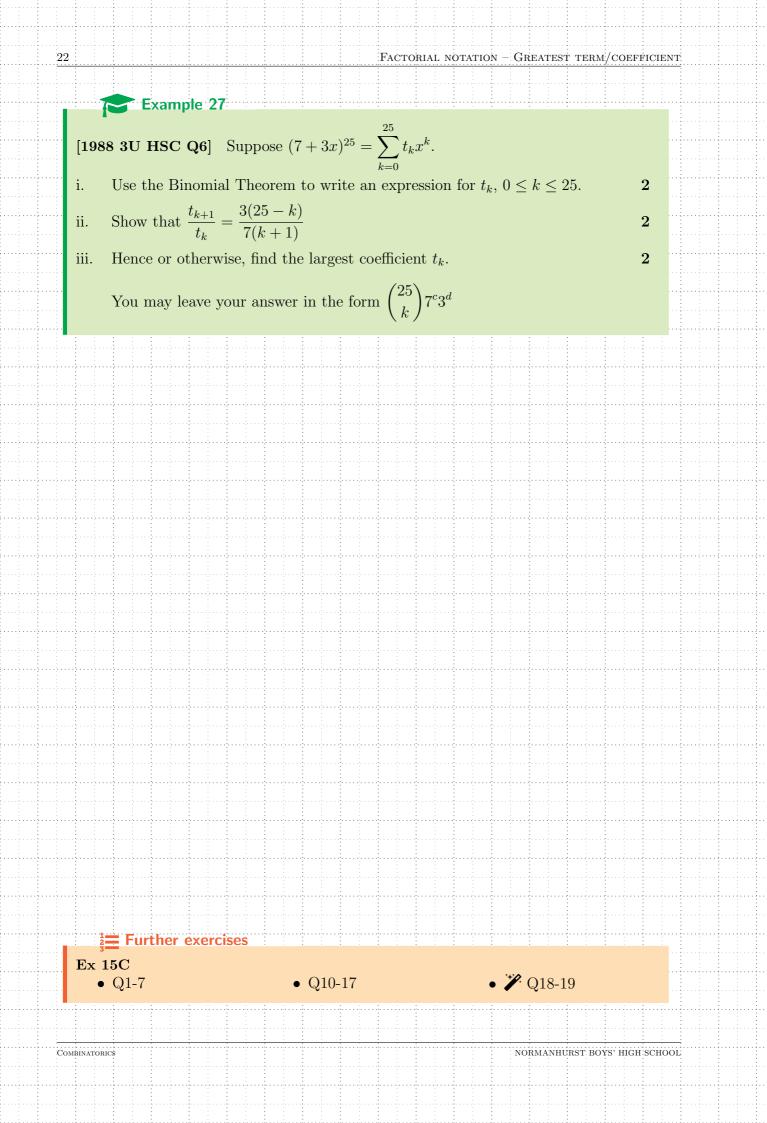
Example 23

In the expansion of $(1+x)^n$, the ratios of three consecutive coefficients are 6: 14: 21. Find these coefficients. Answer: $\binom{9}{2}$, $\binom{9}{3}$, $\binom{9}{4}$

2.3 Greatest term/coefficient

• Beware of solving inequalities with unknown in the denominator.

Example 24


Find the greatest coefficient in the expansion $(1+2x)^6$.

Answer: $\binom{6}{4}2^4$

20)																	FAG	сто	RIA	LN	ОТА	TIO	N —	Gr	ЕАТ	EST	ΓТΕ	RM.	/COEF	FICI	ENT					
										•		•																									
												•																			•			•••••			
	г	:-	_1			k		. m			(:	4			c			1	-)	·	. I					·	(22		3^{11}							
	1	7 111	a,	gre	eate	est	coe	епі	ciei	nt	(111	te	rm	5 0	I II.	lag	mu	ua	e)	in t	ne	ex	pa	nsı	on	ın	$\begin{pmatrix} 2 \end{pmatrix}$	x- ·		$\left(\frac{3}{x}\right)^{11}_{2^4 \times 3^2}$	•						
																									A	Insv	ver	$(11)_{7}$) ×	$2^4 \times 3^7$	7		•••••				
										•• • • • • • • • • • • • • • • • • • •																											
										•																							•••••				
	••••	•••••																															•••••				
										• • • • •																											
		•••••						• • • • • •																									•••••	•••••	•••••		
																								(* * * * * * (* * * * *							(•••••			
																			- 														•••••				
																									• • • • •								•••••	•••••			
		•••••																															•••••	•••••		•••••	
																								· · · · · ·							• • • •						
		•••••																													: :	·····	•••••	•••••			
																															• • •			•••••			
	••••	•••••																											••••				•••••	•••••			
		· · · · · · · · · · · · · · · · · · ·																						((((•••••				
••••	· · · ?	•••••																											••••	•••••	:		•••••	•••••	••••	•••••	
																			-												· · · · · ·						
		····-																															•••••		••••		
										· · · · · ·																			••••								
		•••••																																			
										· · · · · ·																				•••••			•••••	•••••	•••••	•••••	
										· · · · · · · · · · · · · · · · · · ·														- - - - -							- - - - - -						
																																	•••••				
												-												-													
Co	MB :	INATO	ORICS	8																					NO	RMA	NHU	RST	воч	S' HIGH	SCH	OOL	•••••	•••••	•••••		
										• • •		•																	••••					•••••			

Example 26

Find the greatest term (in terms of magnitude)	in $(5-4x)^{12}$ if $x = \frac{2}{3}$. Leave your
answer in its prime factorisation.	Answer: $2^{12} \times 5^9 \times 11 \times 3^{-2}$

Section 3

Proof of general results

Knowledge What is the Binomial Theorem

🗱 Skills

Use Pascal's Triangle and the Binomial Theorem

Vunderstanding

The difference between terms, coefficients and flexibility on which term to increase/decrease the indices

☑ By the end of this section am I able to:

17.5 Derive and use simple identities associated with Pascal's triangle.

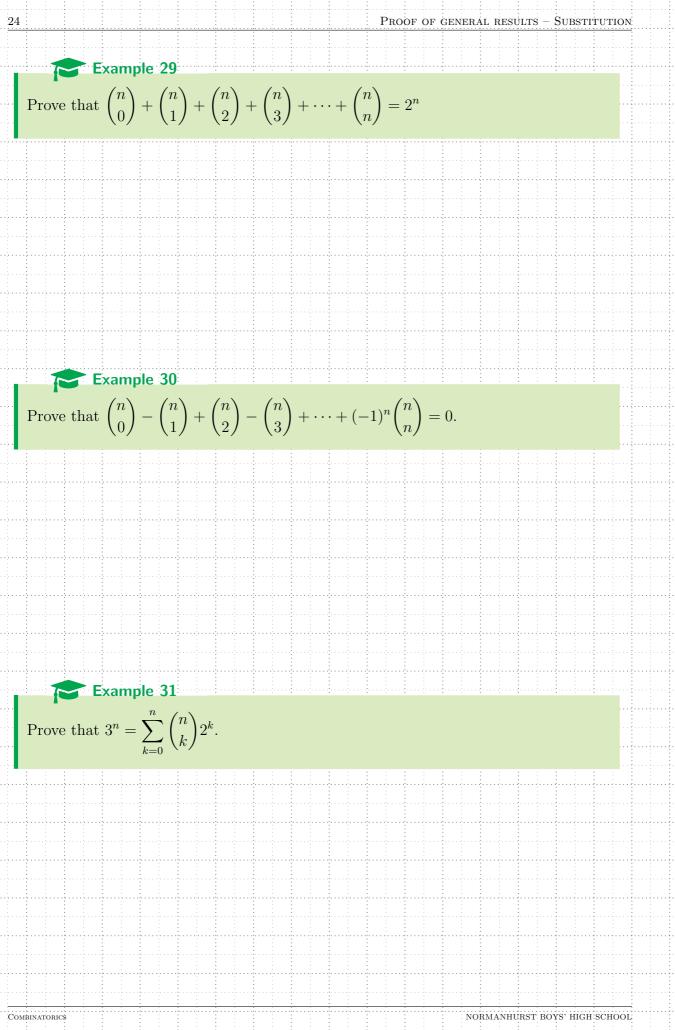
17.6 Explore the use of substitution and differentiation to develop identities using the Binomial Theorem.

17.7 $\,$ Develop expressions of the general term in order to solve harder binomial problems.

3.1 Substitution

If the result to be proven involves

- a summation of $\binom{n}{r}$ with same signs, attempt a substitution into $(1+x)^n$.
- a summation of $\binom{n}{r}$ with signs, attempt a substitution into $(1-x)^n$.


23

• powers of a number (e.g. a^m), substitute x = a into $(1+x)^n$ or $(1-x)^n$.

Example 28

Find the sum of the coefficients in the expansion of $(1 + 2x)^6$.

Answer: 729

From that $\sum_{k=0}^{n} 3^k \binom{n}{k} = 2^{2n}$. NORMANHURST BOYS' HIGH SCHOOL COMBINATORICS

PROOF OF GENERAL RESULTS - SUBSTITUTION

3.2 Differentiation

- If the result to be proven involves binomial coefficients $\binom{n}{k}$ multiplied by their k value, differentiate both sides of the expansion of $(1 + x)^n$.
- If the non-binomial coefficient does not correlate entirely with binomial coefficient ordinal, there may have been a multiplication by x.

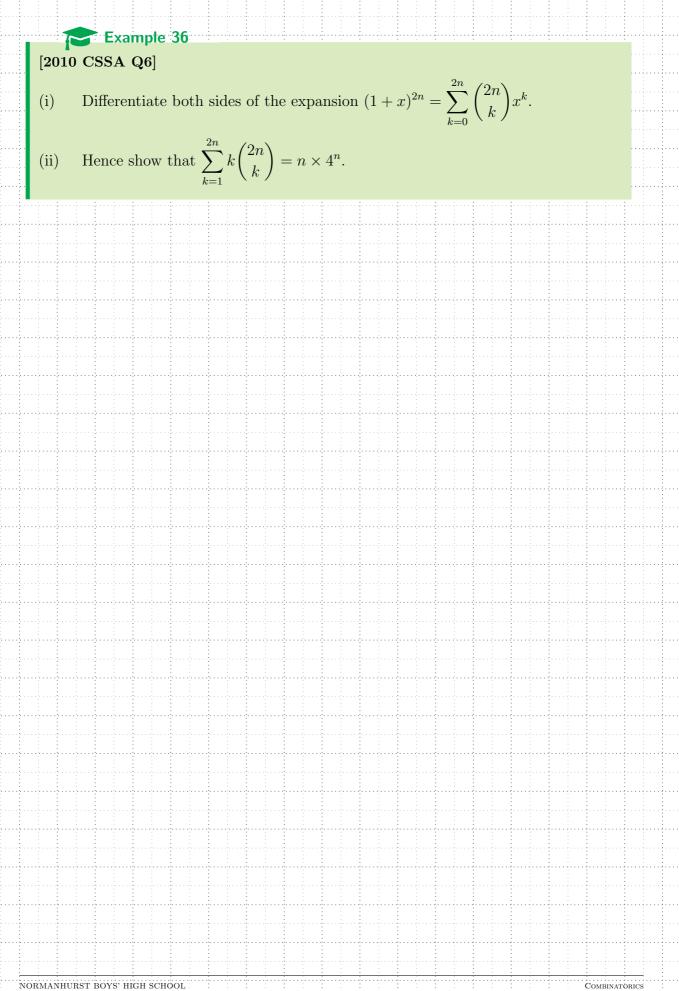
Example 34

Prove that
$$\sum_{r=0}^{n} r\binom{n}{r} = n2^{n-1}$$

NORMANHURST BOYS' HIGH SCHOOL

Example 35

[2006 HSC Q2]


28

(i) By applying the binomial theorem to $(1+x)^n$ and differentiating, show that

$$n(1+x)^{n-1} = \binom{n}{1} + 2\binom{n}{2}x + \dots + r\binom{n}{r}x^{r-1} + \dots + n\binom{n}{n}x^{n-1}$$

(ii) Hence deduce that

$$n3^{n-1} = \binom{n}{1} + \dots + r\binom{n}{r}2^{r-1} + \dots + n\binom{n}{n}2^{n-1}$$

PROOF OF GENERAL RESULTS - DIFFERENTIATION

[2011 Ext 1 HSC Q7] The binomial theorem states that

$$(1+x)^n = \sum_{r=0}^n \binom{n}{r} x^r$$

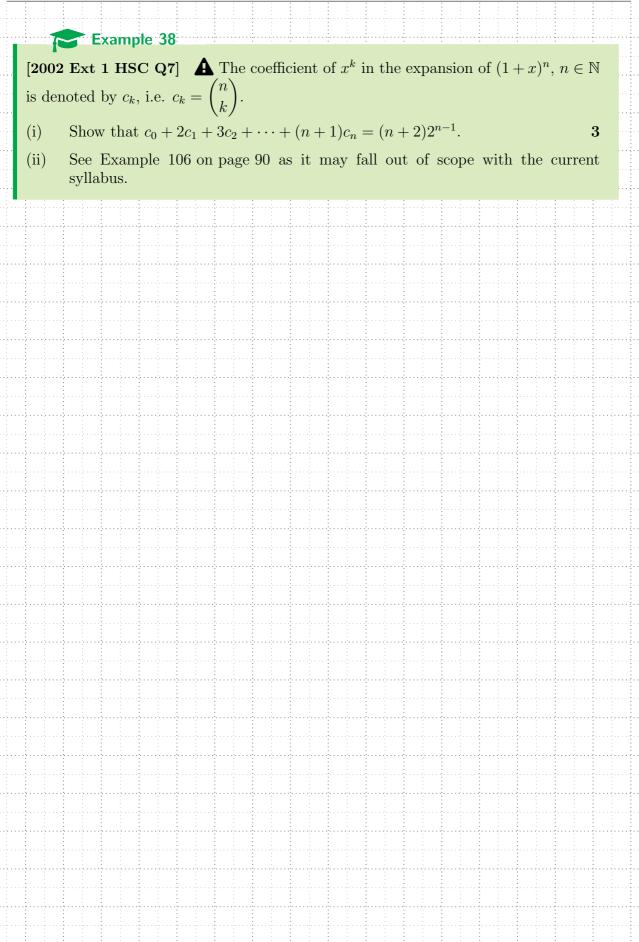
(i) Show that
$$\sum_{r=1}^{n} {n \choose r} rx^r = nx(1+x)^{n-1}$$

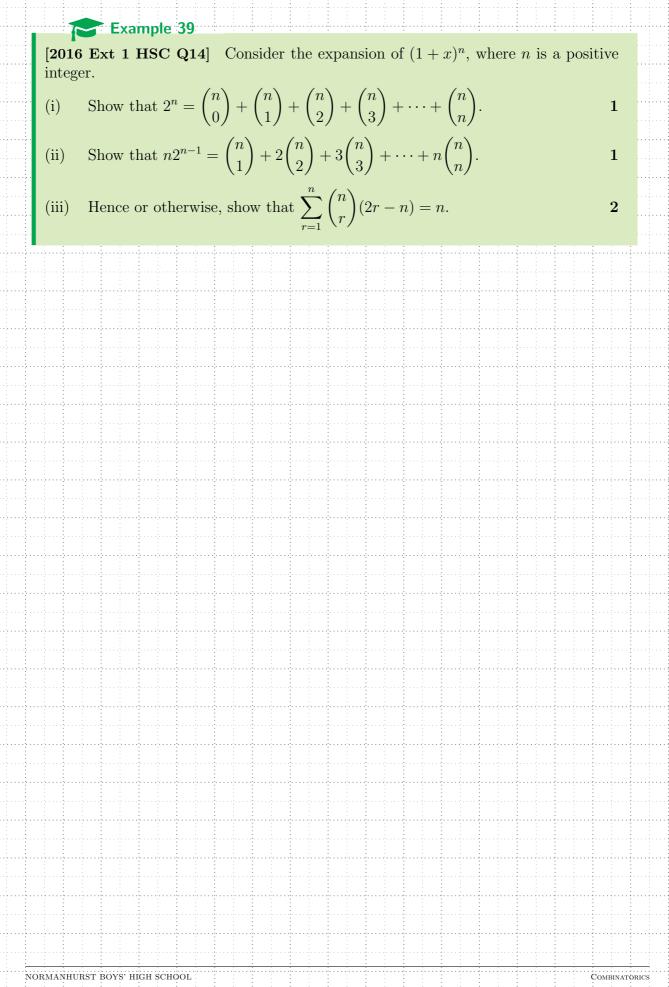
Example 37

(ii) By differentiating the result from part (i), or otherwise, show that

$$\sum_{r=1}^{n} \binom{n}{r} r^2 = n(n+1)2^{n-2}$$

(iii) Assume now that n is even. Show that for $n \ge 4$,


$$\binom{n}{2}2^2 + \binom{n}{4}4^2 + \binom{n}{6}6^2 + \dots + \binom{n}{n}n^2 = n(n+1)2^{n-3}$$


NORMANHURST BOYS' HIGH SCHOOL

3

 $\mathbf{2}$

		• •		· · · · · ·					•••••••			 	· · · · ·				· · · · · · ·				
	Proof				DOULT		DDDI		TATT	NAT.							<u>.</u>			31	
	FROOP	OF GI	SINERA	1L :R	ESULI	5 – DI	FFEF	CEN I)1N	 	 <u>.</u>		<u></u>			<u>.</u>		<u></u>	. 51	
																	:				
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·					••••••••		 	 : :					: 		••••	·	
		• • • • • • • • • • • • • • • • • • • •																			
									••••		 	 									
		· · · · · · · · · · · · · · · · · · ·										 					: :				
											 	 <u>.</u>								. : 	
	•	• •						:													
		•																			
		•										-									
				•••••				•••••	••••		 	 							••••••	• • • • • •	
	· · · · · · · · · · · · · · · · · · ·	2 · · · · 2 · · · · • · · ·						•••••													· · · · · · · · · · · · · · · · · · ·
.;;;;;	••••••••••••••••••••••••••••••••••••••	•••••• •	·•···••·	· · · ·				•••••	••••		 	 					; :		•••••••	• • • • • • •	; ; ; ;
		: : :										÷					:				(
				•••••				••••	••••		 	 					 :			•	
		· · · · · · · · · · · · · · · · · · ·																			
				· · · · · ·				••••	••••		 	 				• • • • • • • • • • • • • • • • • • • •				••	
																	:				
				•••••					••••		 	 ÷			····	• • • • • • • • • • • • • • • • • • • •		• • • • •		• • • • • •	
		: 							••••		 	 			· · · · ·		: : :				
· · · · · · · · · · · · · · · · · · ·	: 	; ;;	÷						••••		 	 ÷					: : :				; ;
		····							· · ·		 	 									
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·									 	 					; ;				
· · · · · · · · · · · · · · · · · · ·			ļ.																		
		· · · · · · · · · · · · · · · · · · ·																			
		· · · · · · · · · · · · · · · · · · ·															: : :				
		· · · · · · · · · · · · · · · · · · ·										 								*	
	•	* *						*									•			*	
		•															· · · · · · · · ·				
		* · · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·				•••••				/ /
		· · · · · · · · · · · · · · · · · · ·							•••••			 					· · · · · ·				
	•	* · · · · · · · · · · · · · · · · · · ·															*			*	· · · · · · · · · · · · · · · · · · ·
		•							••••••		 	 					· · · · · ·		••••••		
	· · · · · · · · · · · · · · · · · · ·	*****						••••••									:				· · · · · · · · · · · · · · · · · · ·
				••••				•••••	•••••••••••••••••••••••••••••••••••••••			 								:	
		• • • • • • • • • • • • • • • • • • •						•••••					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				•	· · · · · · · · · · · · · · · · · · ·
				•••••				•••••	•••••			 		· • • • • • • • • • • • • • • • • • • •					•••		
		• • • • • • • • • • • • • • • • • • •																			
		· · ·						•••••	•••••••		 	 					 		••••••••		
		•						• • • • •													
	NORMA	NHURST	BOYS	HIG	H SCHC	OL		•••••	••••			 		· · · · · · · · · · · · · · · · · · ·		•		Co	OMBINA	TORICS	
	1	t	1.1				: · · ·			1.1	: : :	1	1 T		1 1		÷	· · ·			1

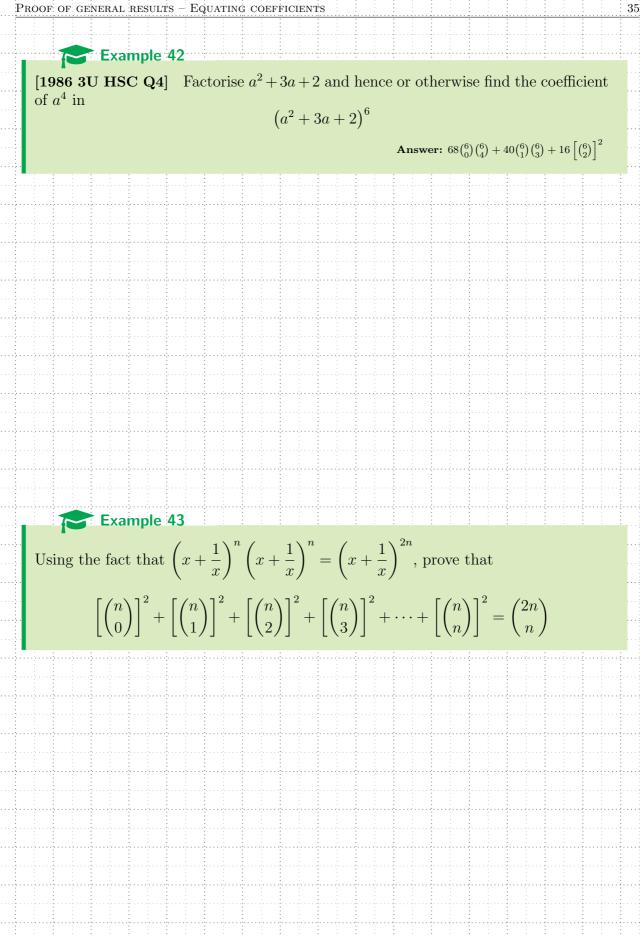
3.3 Equating coefficients

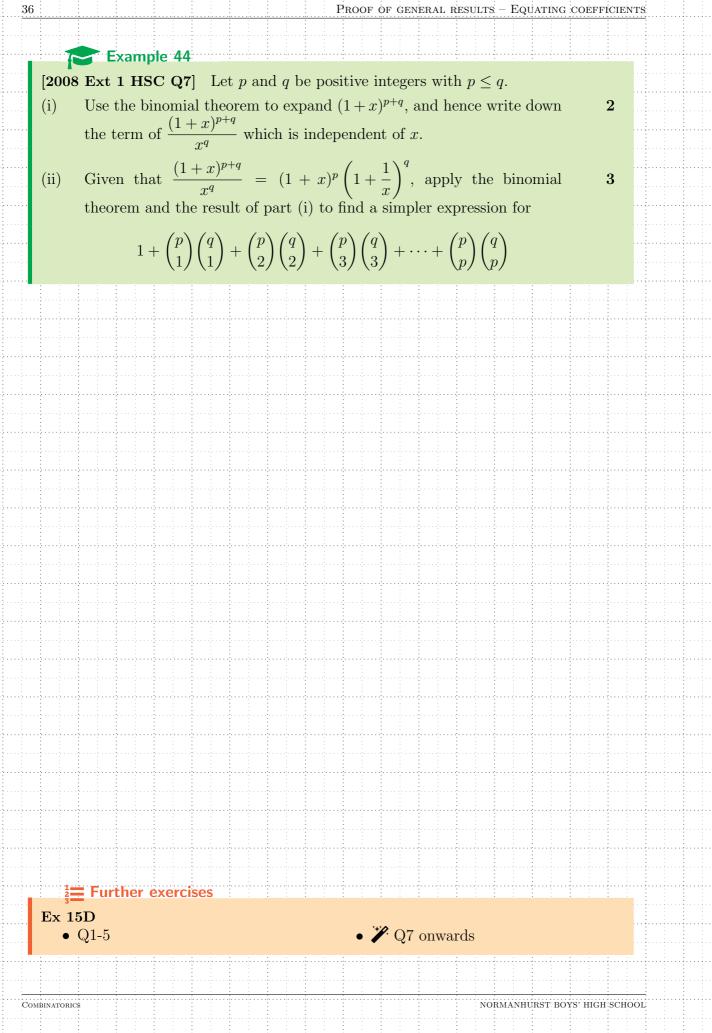
- Look for a particular n in the expansion of $(1+x)^n$ or $(1-x)^n$ and expand.
- On some occasions, expansions of both $(1+x)^n$ and $(1-x)^n$ are required to add/subtract

to obtain required result.

Example 40

[1996 3U HSC Q7] Using the fact that $(1+x)^4(1+x)^9 = (1+x)^{13}$ show that


$$\binom{4}{0}\binom{9}{4} + \binom{4}{1}\binom{9}{3} + \binom{4}{2}\binom{9}{2} + \binom{4}{3}\binom{9}{1} + \binom{4}{4}\binom{9}{0} = \binom{13}{4}$$


Example 41

[1999 3U HSC Q7] By considering $(1-x)^n \left(1+\frac{1}{x}\right)^n$ or otherwise, express

$$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n\binom{n}{n}\binom{n}{n-2}$$

in simplest form.

Part II

Combinatorics

Section 4

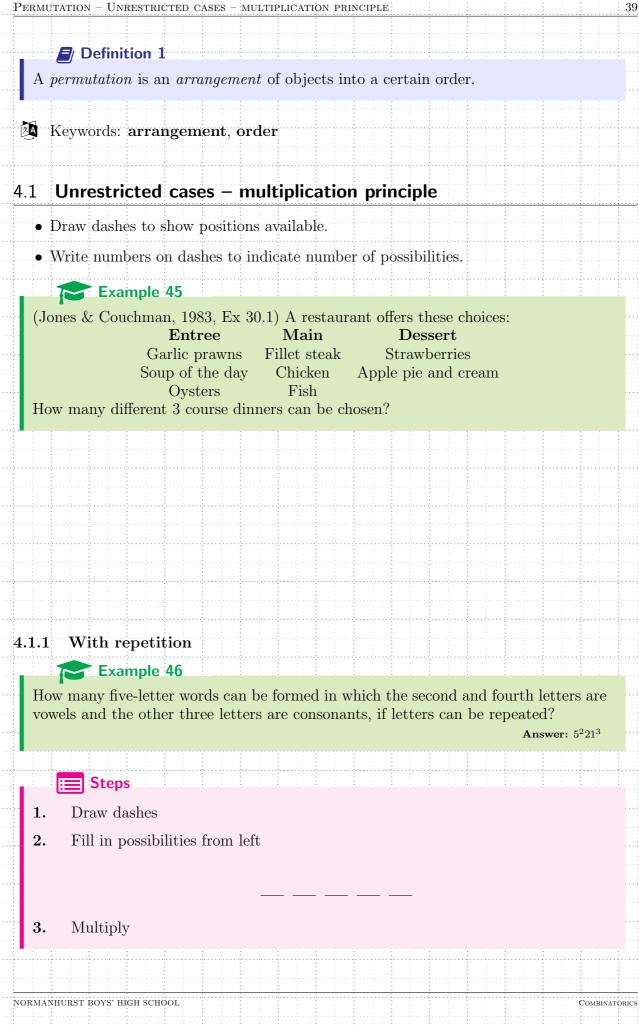
Permutation

Learning Goal(s)

Constant Skills

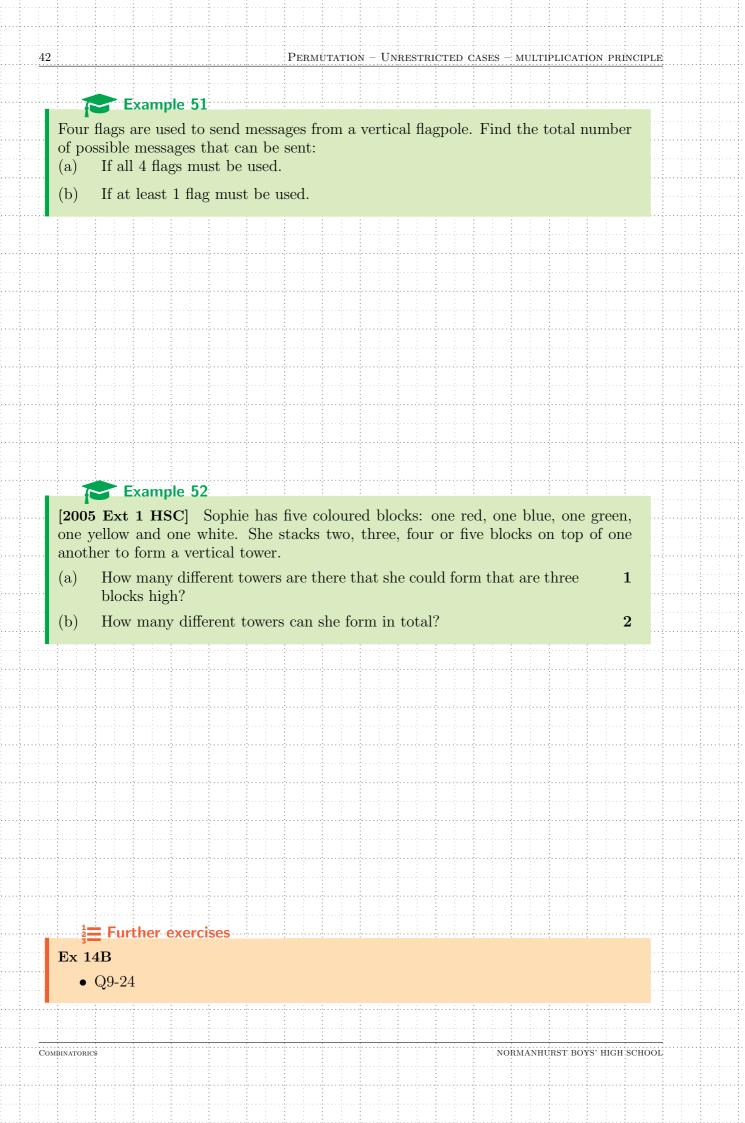
Counting principles

E Knowledge


Use counting principles to calculate permutations and combinations

Vunderstanding

The difference between permutations and combinations


☑ By the end of this section am I able to:

- 17.8 List and count the number of ways an event can occur.
- 17.9 Use factorial notation to describe and determine the number of ways n different items can be arranged in a line or a circle, including problems involving cases where some items are not distinct.
- 17.10 Understand and use permutations to solve problems
- 17.11 Solve problems involving permutations and restrictions with or without repeated objects
- 17.12 Solve problems involving arrangements in a circle (with no repetition).
- 17.13 Understand and use combinations to solve problems
- 17.14 Solve practical problems involving permutations and combinations, including those involving simple probability situations.

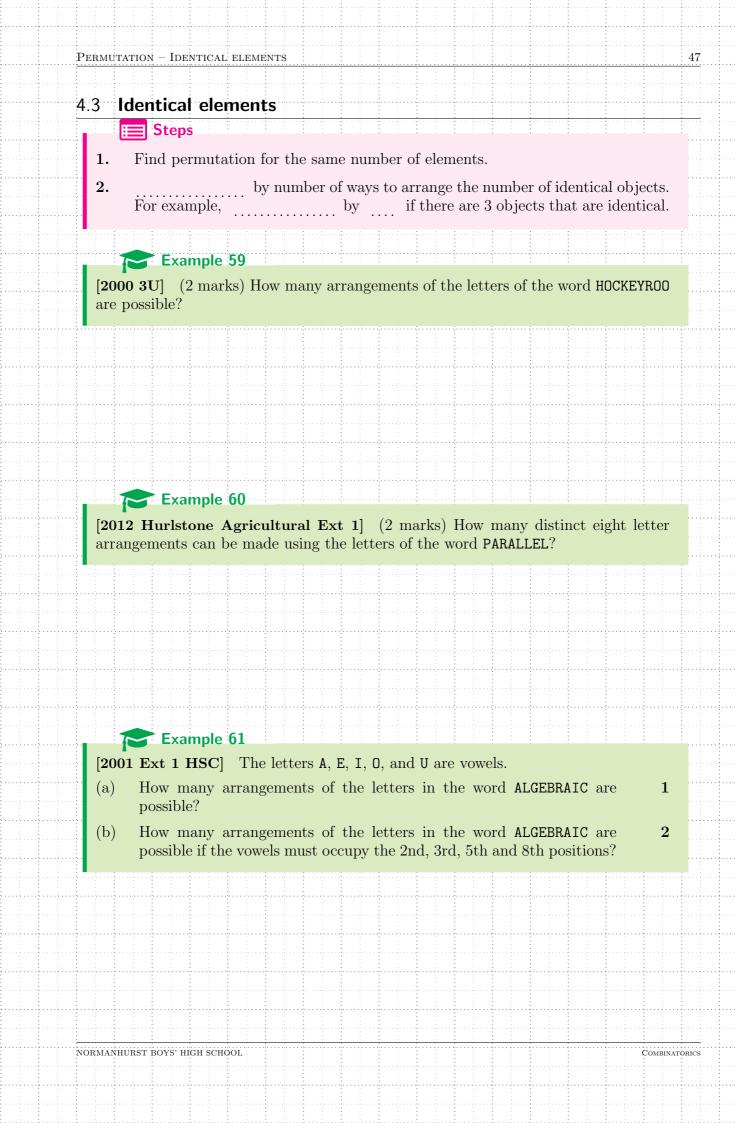
40					Permuta	tion – Un	RESTRIC	TED C	ASES –	MULTI	PLICATI	ON PR	INCIPI	ĿE	
	1 0	TT7 • 1	, . , .								· · · · · · · · · · · · · · · · · · ·				
4.		Without Exam	t repetiti nple 47	on											
	-		ys are the	re to line	up five a	students	?								
•••••••••••••••••••••••••••••••••••••••		🚍 Steps													
	1.	Draw da		. u											
	2.	Fill in po	ossibilities	from left											
	3.	Multiply													
	To be								icting	of		lont			
			ways can a a treasur				mittee	cons	asting	ora	presic	ient,	a		
••••															
		······		·····											
							······································								
				1 1 1 1		1 1 1	1 1 1						• •		· · ·
				· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·		
	-	Exan													
	-	ow many v	nple 49 vays can f	our lette	rs from t	he word	BRIDG	E be	arran	ged i	f no le	etter	is		
	In ho	ow many v		our lette	rs from t	he word	BRIDG	E be	arran	ged i	f no le	etter	IS		
	In ho	ow many v		our lette	rs from t	the word	BRIDG	E be	arran	ged i	f no le	etter	IS		
	In ho	ow many v		our lette	rs from t	he word	BRIDG	E be	arran	ged i	f no le	etter :	is		
	In ho	ow many v		our lette	rs from t	he word	BRIDG	E be	arran	ged i	f no le	etter	IS		
	In ho	ow many v		our lette	rs from t	he word	BRIDG	E be	arran	ged i	f no le	etter	is		
	In ho	ow many v		our lette	rs from t	he word	BRIDG	E be	arran	ged i	f no le	etter :	IS		
	In ho	ow many v		our lette	rs from t	he word	BRIDG	E be	arran	ged i	f no le	etter	IS		
	In ho	ow many v		our lette	rs from t	he word	BRIDG	E be	arran	ged i	f no le	etter	is		
	In ho	ow many v		our lette	rs from t	he word	BRIDG	E be	arran	ged i	f no le	etter	IS		
	In ho	ow many vated?		our lette	rs from t	he word	BRIDG	E be			f no le				

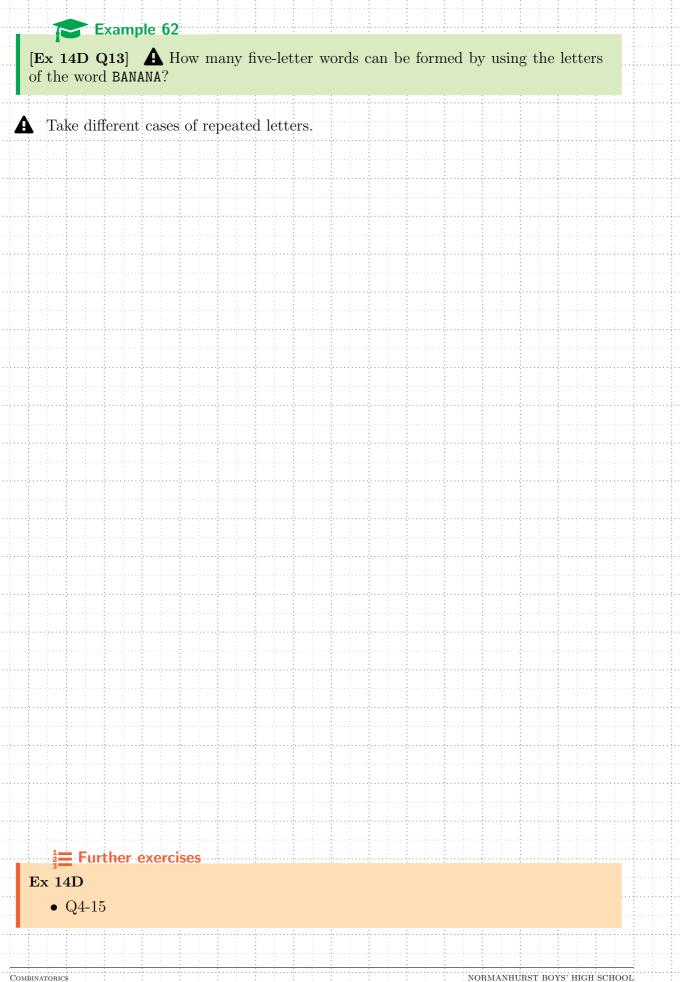
Example 50 In a class of thirty children one prize is awarded for English, another for Science and a third for Mathematics. In how many ways can the recipients be chosen if no child can receive more than one prize? (a)a child can receive more than one prize? (b) Permutation Definition 2 The number of arrangements when permuting r objects from n objects is ${}^{n}P_{r}$. (Mnemonic: "n pick r") • If there are 10 people in total and 4 need to be chosen for President, Vice President, Treasurer and Secretary, • "Complete the factorial": • 🕢 Generalise: • A special case: 0!. Calculate from ${}^{n}P_{n}$:

1	NORI	MANF	IURST	BOYS'	HIGH	SCHOO	ЭL
٠							
٠							

44							· · · · · · · · · · · · · · · · · · ·						•							Р	ERI	MUTA	ΓION	1 – C	Этні	ER	RES	TRIC	CTI	ONS			
<u></u>																••••••••••••••••••••••••••••••••••••••		<u></u>		••••••••••••••••••••••••••••••••••••••			· · · · · · · · · · · · · · · · · · ·						· · · · ·				
			E	xai	mp	le	54					•••••	•			: 		••••		• • • •									: 				
	How																		the	e we	orc	l ME	ALS	if									
	(a)													bed				?															
	(b)	if	the	e vo	ow€	els	wil	ll be	e a	nt t	he	fro	ont	and	l b	acł	κ?																
· · · · ·																		•••••															
) 	· · · · · · · · · · · · · · · · · · ·																	· · · · · ·															
	· · · · · · · · · · · · · · · · · · ·											• • • • •	•••••			••••		••••		••••									•••••			••••	
																	:		÷				:										
													-				-		÷		÷		-					· · · · · ;					
; ; ;	•															· · · · · ·												••••	•••••				
	· · · · · · · · · · · · · · · · · · ·																																
									•••••																			· · · · ?	•••••	•••••	••••	· · · {	
				yai	mn		hh								÷		:		÷				÷										
	-																					f the			UNI	FO	IRM	are	<u>:</u> ə			· · · · · · · · ·	
	[Ex 1 possi	14C	Q																						UNI	FO	RM	are	e				
	[Ex 1	14C ble:	Q	8]	F	inc	d h	ow	ma	any	7 ar	rai	ng€	eme	nts	s of	f th	e l	ett	ers	of		wo		UNI	FO	IRM	are	9				• • • • • •
	[Ex 1 possi	14C ble: if	\mathbf{Q} the	8] e ve	F owe	'inc els	d ho mu	ow ıst (ma oco	any cup	7 ar oy t	rai the	nge fir	eme	nts mie	s of ddl	f th le a	e l nd	ett	ers	of	f the	wo		UNI	FO	IRM	are	Э				· · · ·
	[Ex 1 possi (a)	14C ble: if if	\mathbf{Q} the	8] e vo e w	F owe	'inc els d n	d ho mu nus	ow 1st (t st	ma occ art	any cup t w	v ar oy t vith	rran the U	nge fir an	eme: st, 1 d er	nts mic nd	ddl wit	f th le a th 1	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	are	Э				
	[Ex 1 possi (a) (b)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme: st, 1 d er	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	:FO	IRM	are	9				· · · · · · · · · · · · · · · · · · ·
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	are	Ð				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	aro	9				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	ar	9				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	ar	e				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	ar	9				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	aro	Э				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	ar	9				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	are	9				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	ar	e				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	ar	e				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	ar	2				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	ar	2				
	[Ex 1 possi (a) (b) (c)	14C ble: if if if	\mathbf{Q} the the all	8] • vo • w • th	F owe orc e c	'inc els d m ons	d ho mu nus ¹ son	ow 1st d t st .ant	ma occ art s r	any cup t w nus	y ar oy t rith st l	the U De i	nge fir an in a	eme st, 1 d er a gr	nts mic nd rou	ddl wit pε	f th le a th 1 at t	e l und M,	ett . la	ers st I	of oos	f the	wo ns,	ord	UNI	FO	IRM	ar	Э				

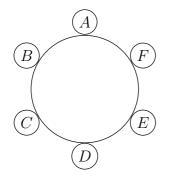
Example 56 [Ex 14C Q16(a)] In how many ways can ten people be arranged in a line:


- (i) without restriction?
- (ii) if one particular person must sit at either end,
- (iii) if two particular people must sit next to one another,
- (iv) if neither of two particular people can sit on either end of the row?


Example 57

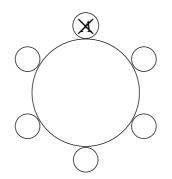
[2007 Ext 1 HSC] (2 marks) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row.

What is the probability that the four children are allocated seats next to each other?



4.4 Circular arrangements

- The number of way of arranging 6 people in a line:
- Arrange 6 people into a circle:

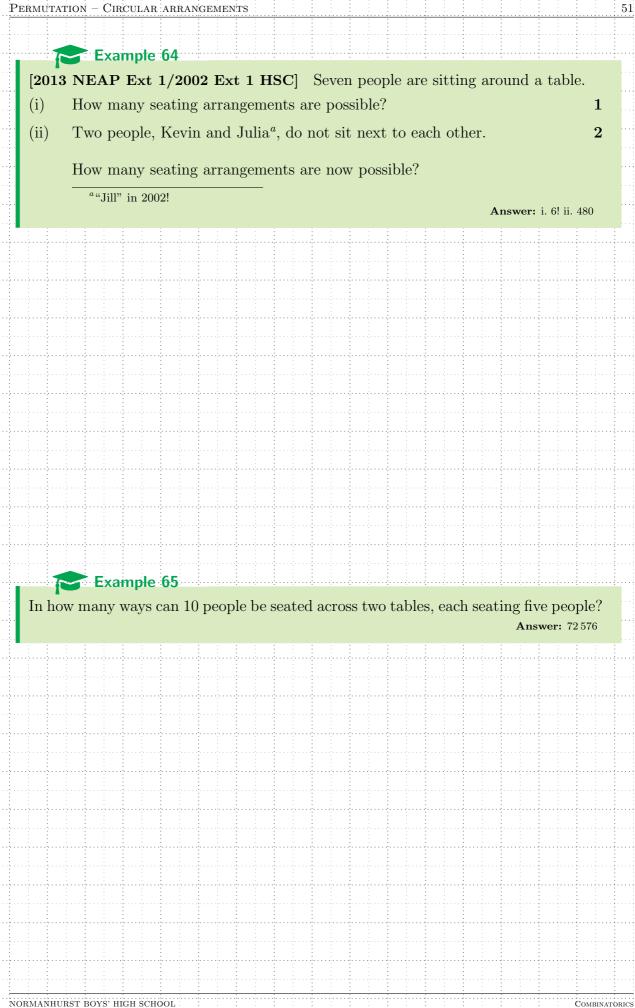

("wrap around" allowed due to circular arrangement).

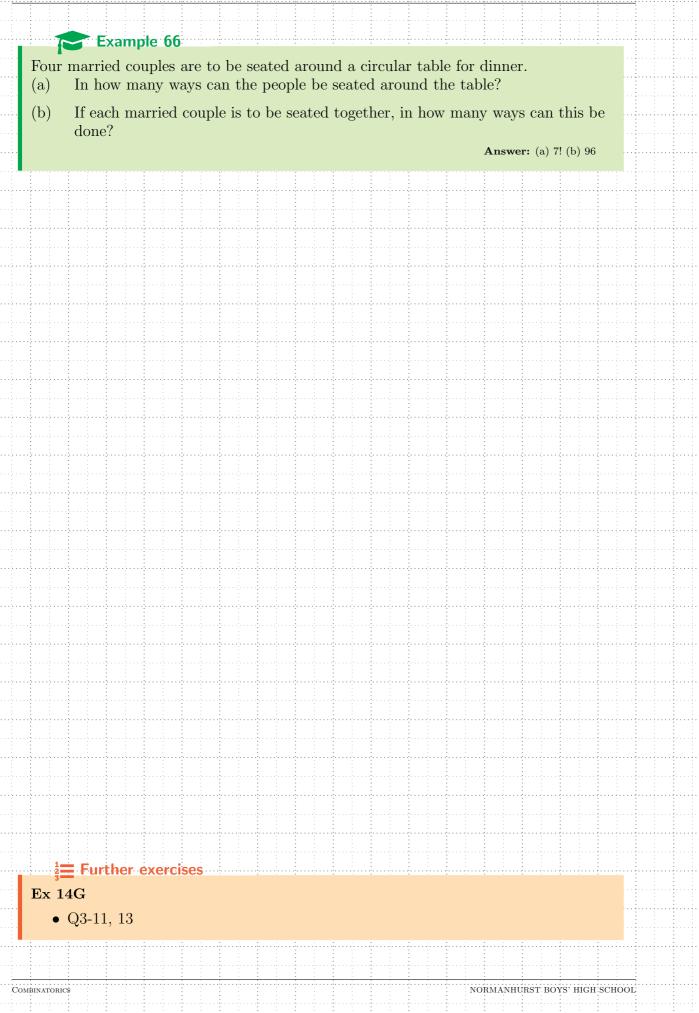
• Solution: write out all linear permutations:

	– Tedious!
–	 Only one of the six arrangements required, i.e.
	= 5!
	- For n different objects,
	$\dots \dots = (n-1)!$

is the same arrangement as

• Alternative solution (used more commonly): fix the location of one person first, then permute.


• Same rules for dealing restrictions (and glued people arising from restrictions): deal with restrictions first, then fix the "group".



Combinatorics

	1	Example	63		
		4 G Q4] Four his be done:	r boys and four girl	ls are arranged in a circle. In how many ways	
	(a)	if there are n	o restrictions.		
	(b)	if the boys ar	nd the girls alternat	te,	
•	(c)		nd girls are in distin	and the second secon	
	(d)			to sit next to one another,	
	(e)			sh to sit next to one another,	
	(c) (f)			it between two particular girls?	
	(1)		nai boy wants to si		
	•••••••••••••••••••••••••••••••••••••••				
		·····			
•••••		······	· · · · · · · · · · · · · · · · · · ·		
 		······································			
· · · · ·	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·			
· · · ·		· · · · · · · · · · · · · · · · · · ·			
· · · · ·		······			
••••					
· · · · ·					
	· · · · · · · · · · · · · · · · · · ·				

NORMANHURST BOYS' HIGH SCHOOL

Section 5

Combinations

5.1 **Definitions**

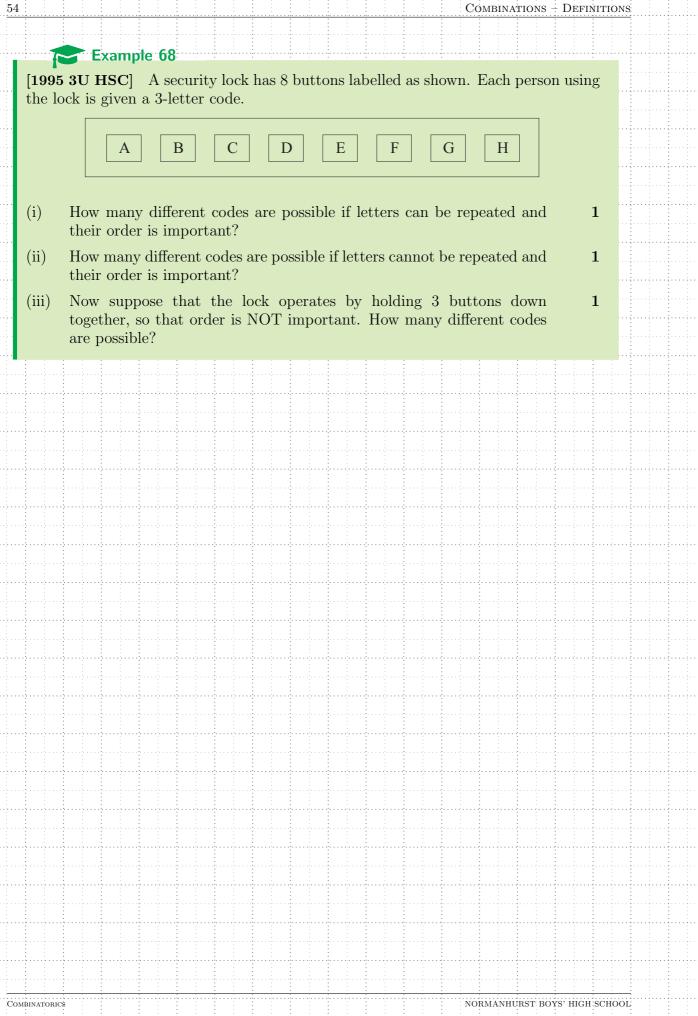
Definition 3 A combination is an grouping of objects where order is irrelevant.

- Keywords: group, committee, team
 - Similar to a permutation, but divide by the number of ways to order the selection.

Laws/Results

Commence with ${}^{n}P_{r}$, i.e. choosing r objects from n objects. The number of *combinations* is given by ${}^{n}C_{r}$ and removing

$${}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!} = \dots$$

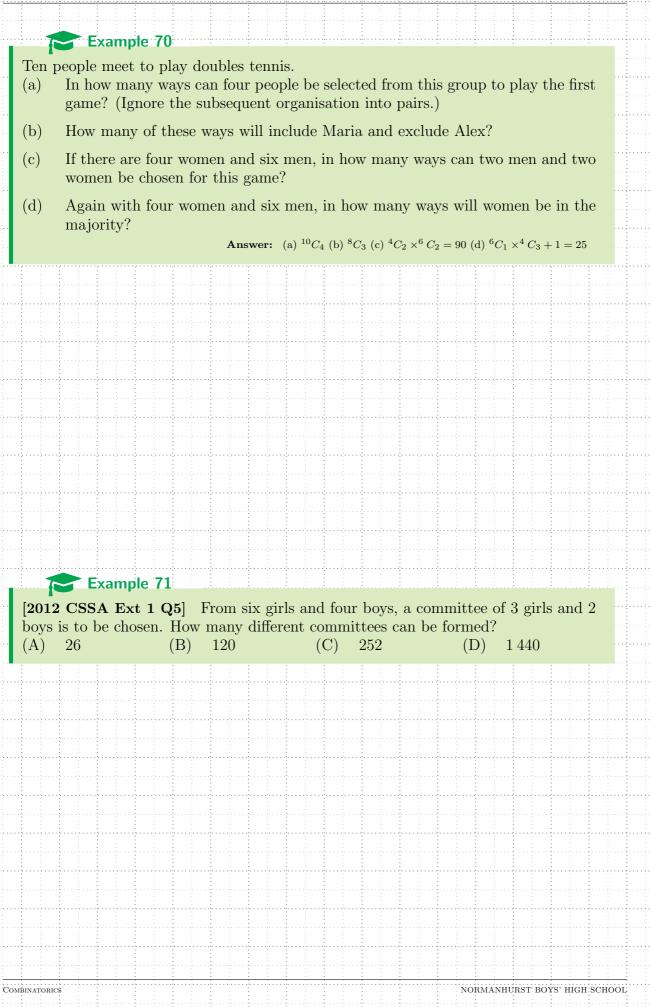

[Ex 14E Q3] Find how many possible combinations there are if, from a group of ten people:

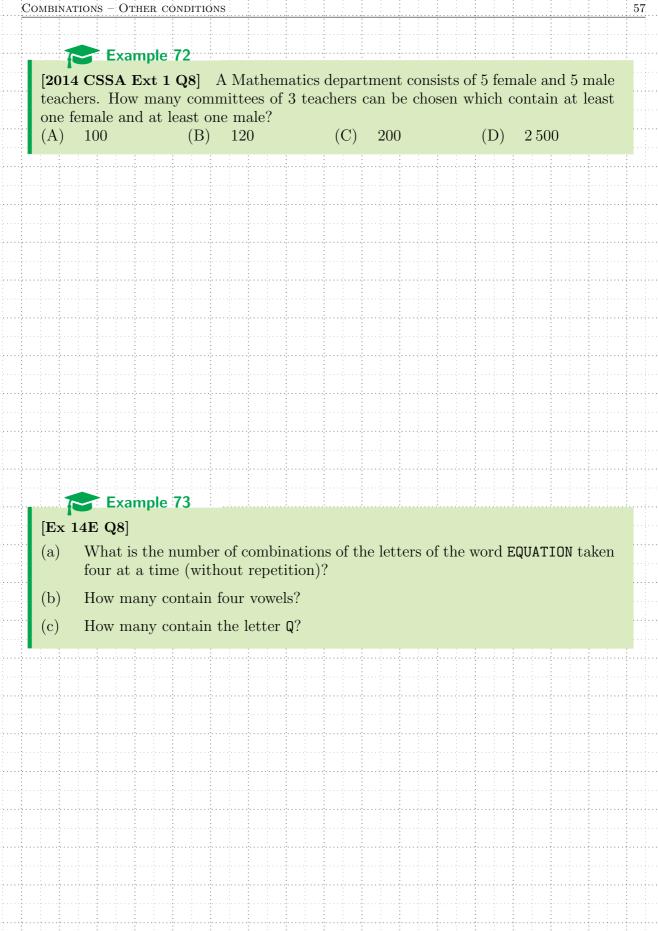
(a) two people are chosen,

Example 67

(b) eight people are chosen.

Why are the answers identical?

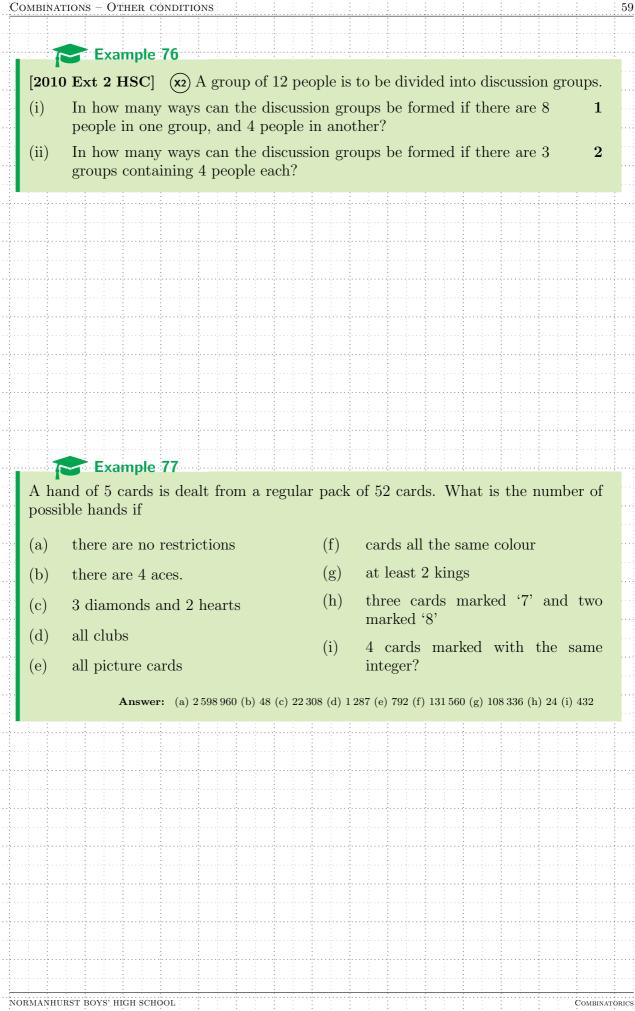



5.2 Other conditions

Example 69

[Ex 14E Q7] A committee of five is to be chosen from six men and eight women. Find how many committees are possible if:

- (a) there are no restrictions,
- (b) all members are to be female,
- (c) all members are to be male,
- (d) there are exactly two men,
- (e) there are four women and one man,
- (f) there is a majority of women,
- (g) a particular man must be included,
- (h) a particular man must not be included.

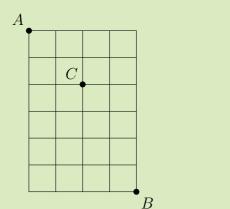

NORMANHURST BOYS' HIGH SCHOOL

COMBINATORICS

58	· · · · · · · · · · · · · · · · · · ·	COMBINATIONS – OTHER CONDITIONS	•••••
	7	Example 74	
	-	4E Q13] Ten points P_1, P_2, \ldots, P_{10} are chosen in a plane, no three of the	
	-	being collinear.	
·	(a)	How many lines can be drawn through pairs of the points?	
	(b)	How many triangles can be drawn using the given points as vertices?	
·	(c)	How many of these triangles have P_1 as one of their vertices?	
	(d)	How many of these triangles have P_1 and P_2 as vertices?	
	•		
	· · · · · · · · · · · · · · · · · · ·		
	; ;;		
	·····›··· · · · · · · · · · · · · · · ·		
	• • •		 •••••••
	7	Example 75	
		Ext 2 HSC] (x_2) A class of 22 students is to be divided into four groups	
		ting of 4, 5, 6 and 7 students.	
	(i)	In how many ways can this be done? Leave your answer in unsimplified 2 form.	
	(ii)	Suppose that the four groups have been chosen. 2	
		In how many ways can the 22 students be arranged around a circular table if the students in each group are to be seated together? Leave	•••••
		your answer in unsimplified form.	
	· · · · · · · · · · · · · · · · · · ·		
	•		
	· · · ·		
			:
••••			

NORMANHURST BOYS' HIGH SCHOOL

С	ОMI	BINA	TIC	ŃS	-O	THE	ΞŔ	CÓN	DIT	IÓNS	



Example 78

[Ex 14E Q25] The diagram shows a 6×4 grid. The aim is to walk from the point A in the top left-hand corner to the point B in the bottom right-hand corner by walking along the black lines either downwards or to the right. A single move is defined as walking along one side of a single small square, thus it takes you ten moves to get from A to B.

(i)

Find how many different routes are possible:

without restriction,

- (ii) if you must pass through C,
- (iii) if you cannot move along the top line of the grid,
- (iv) if you cannot move along the second row from the top of the grid.

Answer: (i) 210 (ii) 90 (iii) 126 (iv) 126

Example 79 [2020 Ext 1 HSC Q14]

i. Use the identity $(1+x)^{2n} = (1+x)^n (1+x)^n$ to show that

$$\binom{2n}{n} = \binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2$$

where n is a positive integer.

ii. A club has 2n members, with n women and n men.

A group consisting of an even number (0, 2, 4, ..., 2n) of members is chosen, with the number of men equal to the number of women.

Show, giving reasons, that the number of ways to do this is $\binom{2n}{n}$

iii. From the group chosen in part (ii), one of the men and one of the women are selected as leaders.

Show, giving reasons, that the number of ways to choose the even number of people and then the leaders is

$$1^{2} \binom{n}{1}^{2} + 2^{2} \binom{n}{2}^{2} + \dots + n^{2} \binom{n}{n}^{2}$$

iv. The process is now reversed so that the leaders, one man and one woman, are chosen first. The rest of the group is then selected, still made up of an equal number of women and men.

By considering this reversed process and using part (ii), find a simple expression for the sum in part (iii).

Answer: $n^2 \binom{2n-2}{n-1}$

61

 $\mathbf{2}$

 $\mathbf{2}$

2

 $\mathbf{2}$

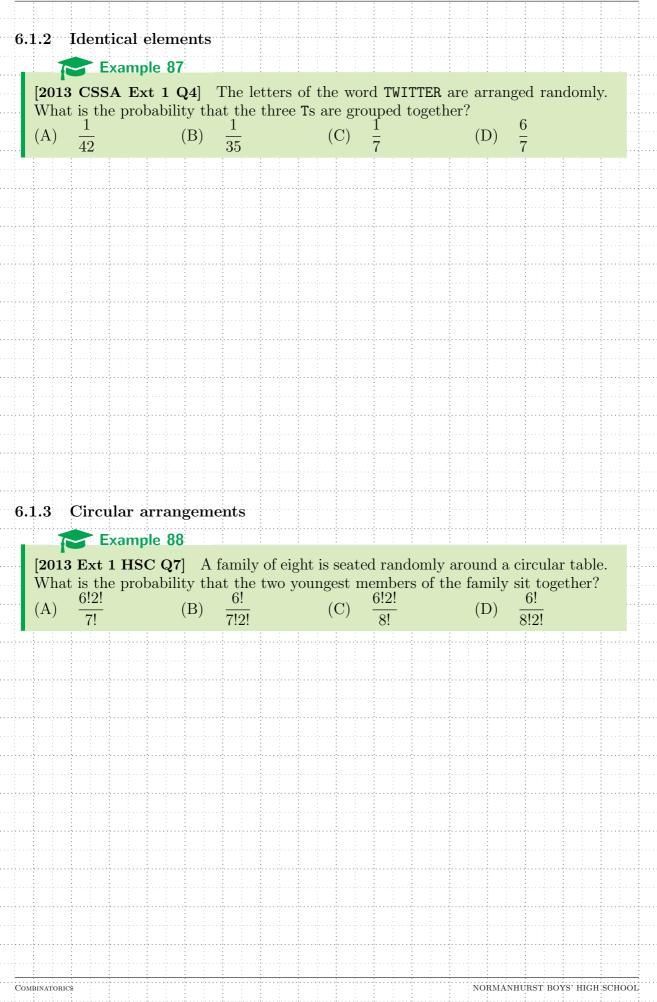
NORMANHURST BOYS' HIGH SCHOOL

		· · · · :					 												÷							· · · · · :						
	6	52		<u>.</u>		:					<u>.</u>			 :				C	loi	MBINA	FION	s –	Ю	HE	R C	ONÉ	ITI	ONS				: :
:		:		:								:				· · ·	:							-		:				• •	-	
		:		:		•								•		• •	*		:					•		•				•		
•••	••••	•••••	•••••	::::	••••	:	 				<u>.</u>	••••	•••••	 			••••	· · · · :	÷		· · · · i ;		 :	•••••		•••••	•••••		•••••	• • • • • • •	•••••	
		• • • • • •				•	 	 								• • • •			÷											• • •		
÷		:		÷					-			:				· ·	-		÷							-					-	
:		:		:		•			:							•	:		:								-			•		-
	÷	•••••	•••••	·	••••		 					••••		 			••••	· · · · ·	•				· · · · · : :	•••••		•••••			•••••		•••••	 : :
-				-															-													
	••••													 							•••••		•••••									
																														• • •		
÷		÷		÷					-			:					:									:					-	
	1			÷										 																		
· · : · ·		· · · · : :										•••••				: :	••••		· · ÷					• • • • •		· · · · · : :		•••••		:; :	•••••	
•••	••••	· · · · ·	•••••				 	 					• • • • •	 			••••		÷		•••••		•••••	• • • • •	• • • • •	· · · · ;	•••••		•••••		••••	 ÷
								 																						: :;		
÷				÷					-			:							÷													
:												:					:		:													
																			÷													
	••••	•••••	•••••		••••		 	 		•••••			•••••	 	: :			· · · · ·	÷		· · · · · ; ;		· · · · · ; ;		• • • • •	•••••	•••••		•••••			 :
: ;	: ;	: ;	· · · · · ; · · ·			; ; ;	 	 ; 	: ;			:		 ; ;	: :	: ;;.	:				: 		: ; ;	;		: ;				: :;	:	 : : :
:		:		÷					-								-		1					-		-					-	
:		:		÷								:					:		:							:						
:	••••	····› :	•••••	::::	••••						•••••• •	•••••		 		00- 1	••••				•••••		•••••	•••••		•••••					•••••	
		•••••										•••••							÷												•••••	
							 	 		• • • • • • • • • • • • • • • • • • • •				 							•••••		•••••			•••••						
		;						 																								
÷		÷		-					-							•	:		÷							-					-	
														 	-																	
•••		•••••		•••••••					••••		•••••• •	•••••				::- :	•••••		· · ·							•••••		•••••		:	•••••	
•••	••••}	· · · · · ·		•••	••••		 	 		•••••		••••	• • • • •	 			••••	••••	÷		•••••		•••••	•••••	•••••	•••••			•••••		•••••	
								 											÷					•••••		•••••				: :;		
-																	-															
				-																										•		
· · · · ·	••••	•••••	•••••		••••	:					••••••	•••••	•••••	 		: :	••••	· · · · · · · · · · · · · · · · · · ·	1		•••••		•••••	•••••	• • • • •	•••••	••••	•••••		•••••• •	•••••	 (• •
•••••••		•••••		÷				 				•••••					••••		÷							•••••				• • • • • • • • •	•••••	
	· · · · ;	· · · · · ?	····;··		· · · · · · · · · ·	: : · · · · ·	 	 		•••••		••••	•••••	 : : · · · · ·	: :••••		••••	· · · · ÷ · · ·	÷		: : · · · · ?		: : · · · · {	•••••	•••••	: : · · · · ?	: ; ;	•••••	•••••	: : · · · · :	•••••	 ÷
								 																						· · · · · · ·		
÷				÷							1	:							÷													1
															-																	
																: :										•••••				· · · · · · · · · · · · · · · · · · ·		
·	••••}	•••••			••••		 	 		•••••		••••	•••••	 			•••••		÷		•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	· · · · · · · ·	•••••	 ÷
		· · · · · · · ·						 											÷											: : · · · · :		
							 	 						 																		 i i
÷		:		÷					-		1	:				•	-							-		-					-	
:	••••	· · · · ?		1	••••							:		 		•	•••••				••••		•••••	•••••		•••••	•••••				•••••	 4 + + - -
•••		••••						 									••••		÷							•••••					•••••	÷
	••••	•••••			••••		 	 						 		: 	••••				•••••		•••••	•••••	••••	· · · · · ?	•••••	•••••	•••••		•••••	
								 																						•		: :
:				:								•				· · · · · · · · ·														*		
	••••	•••••	••••		••••		 	 						 			••••				•••••		•••••	••••	•••••	•••••	•••••		•••••		•••••	
•							 	 				•••••																		· · · · · ·		
		: 		100	•••••		 	 				: ;								NTOT			Derri	DOT	S' Н		SCIT	001				
		JOMB	AINATOR	108																NOI	UVIA	чпU	1.51	501	ын	бЦ	SCH					
÷		÷		÷					-			:					:		1			-		-		-					-	

5.3 **A** Selection then arrangement Example 80 Five letter words are formed from the letters of the word PARABOLA. How many selections of 5 letters can be made? (a) How many different five letter words are possible if (b) there were no restrictions? i the word contained no As? ii iii the word contained at least one A?

64					* * * * * *					*		Co	MBI	NAT	ION	s -	A	S	ELE	CTIC	r nc	HEI	NA	RRAI	NGE	EMENT	i.	
										*				•														
	-		Exam			0	ut c	of 10	0 co	onte	esta	ant	s, s	six	are	e to	o b	e s	sele	ecte	ed f	or	th	e fii	nal			
			comp																									
		ow ma 10!	any wa	ays c			pro 10!	ces	s be	e ca				$\frac{10!}{10!}$							1	0!						
	(A)	6!4!			(B))	6!				()	C)		4!2					(L))		4!						
					· · · · · · · · · · · · · · · · · · ·																							
					*					•									•									
•••••	•••••••••••••••••••••••••••••••••••••••									· · · · · · · · · · · · · · · · · · ·	·]····	(* * * * * * 	(* * * * * 						•••••	•••••						••••(•••••	· · · · · · · · · · · · · · · · · · ·	
																			•••••									
					· · · · · · · · · · · · · · · · · · ·					•			- - - - -	•					•							••••		
•••••						·			••••••		· · · · · ·									•••••		••••		•••••		••••		
												: 							•	· · · · · · ·								
	1		Exam			1	• •	1	c		1	c		1	1			C A	DD	000	-0						· · · · · · · · · · · · · · · · · · ·	
	How	many	r four	lette	r wo	ords	s ca	n be	e to	rme	ed :	froi	m t	the	let	tei	cs c	DI A	IRR	UTI	[] [Ar	ısw	er: 1	102			
••••																												
· · · · · ·	•	÷		÷		· · · · · ·							: 													••••		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			- - - - - - - - -		· · · · · · · · · · · · · · · · · · ·												•	•••••								
•••••					· · · · · · · · · · · · · · · · · · ·	•••••							· · · · · · · · · · · · · · · · · · ·	•				• • • • •		• • • • •		••••				••••		
										· · · · · · · · · · · · · · · · · · ·										•••••						• • • • •		
					* * * * *		• · · · · · · · · · · · · · · · · · · ·			•									•						•			*
					• • • • • • • • • • • • • • • • • • •					· · · · · · · · · · · · · · · · · · ·		- - - - - - - - - - - - - - - - - - -	· · · · · ·	· · · · · · ·					• • • • • •									
										•																		
	· · · · · · · · · · · · · · · · · · · · · · · · · ·				• • • • • • •		· · · · · · · · · · · · · · · · · · ·			- - - - - - - - -		· • • • •		•						•••••		••••				••••		
					· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·																		
	IBINATORIO					· · · · · ·			•••••	· · · · · · · · · · · · · · · · · · ·									NO	3 1 1 1		257	BOV	S, III	<u>тн с</u>	СНООІ	1	
		يس 			*					* * * *		•		• • • •					101	UVI A.I	inur			5 111		51001		

Combinations – A Selection then arrangement


Section 6

Probability with Combinatorics

6	.1 6	robability with permutations	
	1. 2.	Steps Steps Find (case) first. Find permutations involving restrictions.	•••
	[201 arra	Example 84 3 Independent Ext 1 Trial] (2 marks) The letters of the word NUMBER are aged at random in a row. Find the probability that consonants occupy both end ions.	•••
6	.1.1	Other conditions	
	-	t people of whom A and B are two, arrange themselves at random in a straight What is the probability that A and B are next to each other, A and B occupy the end positions, there are at least 3 people between A and B? Answer: (a) $\frac{1}{4}$ (b) $\frac{1}{28}$ (c) $\frac{5}{14}$	•••
		66	

Example 86 The letters of the word **TUESDAY** are arranged at random in a row. What is the probability that

- (a) the vowels and consonants occupy alternate positions
- (b) the vowels are together
- (c) the vowels are together and the letter T occupies the first place?

•	· <u>·</u> · · ·		5		E	xai	mp	le	89		÷ · · · ·					• • • • •		• • • • •						••••	•••••	• • • • •		• • • •				<u></u>
			ur	Ch	ine	ese,																						inv	vite	d t	τo	a
			nfei												0																	
		(a)				del rate	~						~	-			-	ot	ogr	rap	h.	А	SSU	ımi	ng	th	ıat	th	ley	ar	riv	е
				i.		tł	ıey	' ar	e s	seat	ted	ac	ecor	diı	ng	to	the	ir	nat	tion	nali	ity.										
				ii.		tł	ie '	two	o V	<i>'</i> iet	na	me	se a	are	se	pai	rate	ed.														
		(b))			he ng									~									roi	inc	l ta	abl	e.	Wi	th	th	e
				i.		tł	ıey	, ar	e s	seat	ted	in	ac	cor	dir	ıg '	to 1	the	eir 1	nat	ior	ıali	ty.									
				ii.		tł	ıe	Ch	ine	ese	are	e se	eate	ed 1	tog	etł	ier.															
																			A	nsw	er:	(a)) i. ;	$\frac{2}{75\ 07}$	<u>5</u> ii.	$\frac{11}{13}$	(b)	i	$\frac{1}{1155}$	_ō ii.	$\frac{1}{55}$	
	• • • •																								•••••							
											-													-								
	••••								:		:														•••••						;	
									:		:						· · · · · ·															
	••••							• • • • •	:																•••••						; • • • • •	
									:		:																				;	
	• • • •																•															
									-		:																					
	••••																			• • • • •					•••••	•••••						
***	• • • •			• • • • •					· · · · ·		•••••• •			• • • • •							:				•••••							
••••											: :																					
	••••								· · · · ·																•••••					•••••		
									· · · · · ·																				•			
	• • • • •								· · · · ·																•••••	••••						
																									•••••							
									· · · · · · ·			(* * * * * *													•••••				· · · · · · · · · · · · · · · · · · ·			
																									•••••							
																	· · · · · ·															
	• • • •																								•••••							
	• • • •												•												•••••	••••						
	• • • • •																								•••••							
											•		•				· · · · ·												• • • • •			
	• • • •									: - • • • • •			•												•••••							
													•																			
	• • • • •							:																	•••••							
													- - - -				· · · · · ·															

NORMANHURST BOYS' HIGH SCHOOL

Combinatorics

6.2 **Probability with combinations**

Example 90

An jar contains 9 distinguishable cubes of which 3 are white and 6 black. Two cubes are drawn at random without replacement. Calculate the probability that both cubes are black. Answer: $\frac{5}{12}$

Example 91

Three cards are dealt from a pack of 52. Find the probability that one club and two hearts are dealt,

(a) in that order. (b) in any order.

	_		Exa																										<u>.</u>
Fro is s	om sele	a ecte	grouj ed at	ро ra	of 1: .nde	2 p om	eoj V	ple Vh	of at	w] is f	hor the	n 8 pr	3 a: ob	re : abi	ma lity	les / tł	ar hat	nd 4 the	are san	fer apl	nal e c	.es, ont	a tain	sai is a	mp at	le o leas	of 4 st :	4 2	
fen				_ 0								P ²			,					P									
																													:
					·.···																								
																													:
																							· • • •						
																											•••••		
																							•						:
																											•••••		
																													:
																													ŀ
																											•••••		
					·····																· · · · · · · · · · · · · · · · · · ·		() 			· · · · · · · · · · · · · · · · · · ·			
																													-
						:																					•••••		
																							· · · · · ·						
																							• • • •						:
																				(*************************************									· · · ·
						: 					••••																		: : :
																							· · · · · · · · · · · · · · · · · · ·						
																													: : : :
· · · · · · · · · · · · · · · · · · ·																			• • •				· · · · ·						: : :
					•••••						• • • • • •								•				· · · · · · · · · · · · · · · · · · ·						; :
						•																	· · · · · · · · · · · · · · · · · · ·						:
			• • • • • •				-																				• • • • •		:

				-		-													:							:			:
																													11

						*				*			•							*						
72	<u></u>	· · · · · · · · · · · · · · · · · · ·		<u></u>	:	· · · · · · · · · · · · · · · · · · ·	:] :	Pro	BABILI'	ΓY V	NIT	н Сом	BINA	TOI	RICS	- :I	Proba	BILIT	Y WITH	ĊON	BIN	ATIONS	<u>.</u>	•••••		
										•			· · · · · · · · · · · · · · · · · · ·											 		
			* * * * * * * * * *		· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·		•	· · · · · · ·						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · ·			•••••			· · · · · · · · · · · · · · · · · · ·
			* * *																							
			* * *																					 		
																								 •••••		
																				* * * *						
 																							: :	 •••••		
 																								 ••••		
			* * *																							
 																								 •••••		
			•																							
																								 •••••		
						· · · · · · · · · · · · · · · · · · ·																				
 																								 •••••	•••••	
																				• • • • • •				 ••••	•••••	
			• • •							•																
																							(•••••		
							••••••••																	 •••••		
			* * *																							
 											• • • • •													 		
 					· · · · · · · · · · · · · · · · · · ·																			 ••••	· · · · · .	
											· · · · · · ·															
																							:	 ••••		
			• • •			•																		 		
																				•				•••••		
						•				- - - -	· · · ·		· · · · · ·													
Сомв	SINATOF	ucŝ	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						· · · · · · ·						NO	RMANH	IURST BC	YS' H	IGH	SCHOOI	*****			· · · · · · · · · · · · · · · · · · ·
					- - - - -	•							•							*				•••••		
			• • •			•				•			•							*		-				

[2015 Ext 1 HSC Q14] \clubsuit Two players A and B play a series of games against each other to get a prize. In any game, either of the players is equally likely to win.

To begin with, the first player who wins a total of 5 games gets the prize.

(i) Explain why the probability of player A getting the prize in exactly 7 games is

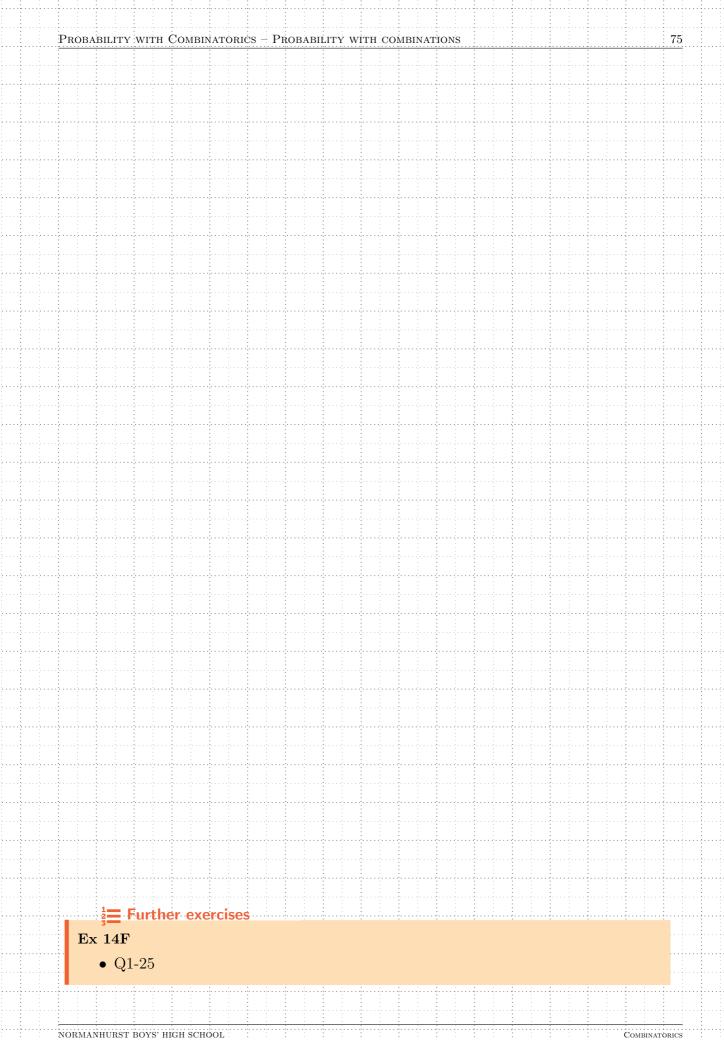
- (ii) Write an expression for the probability of player A getting the prize in at most 7 games.
- (iii) Suppose now that the prize is given to the first player to win a total of (n + 1) games, where n is a positive integer.

By considering the probability that A gets the prize, prove that

$$\binom{n}{n}2^{n} + \binom{n+1}{n}2^{n-1} + \binom{n+2}{n}2^{n-2} + \dots + \binom{2n}{n} = 2^{2n}$$

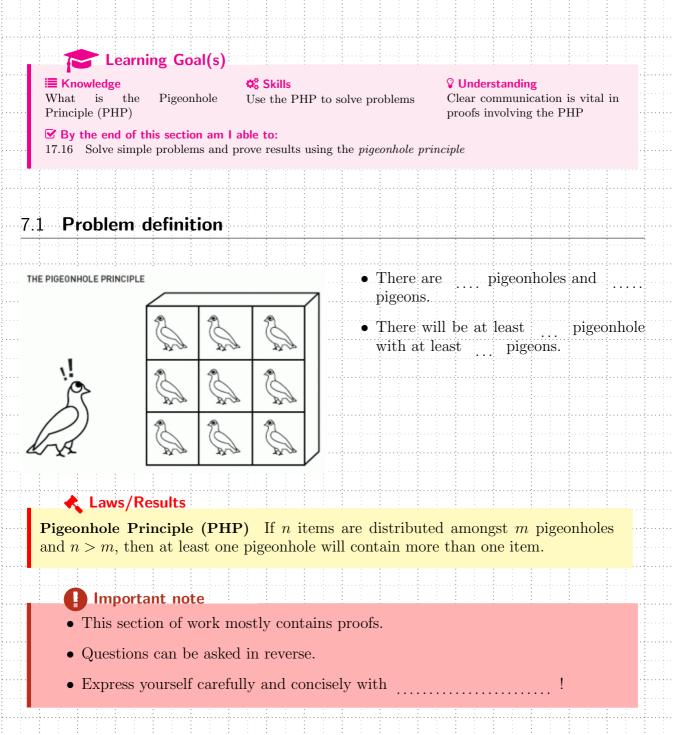
A What type of question is this?

NORMANHURST BOYS' HIGH SCHOOL


73

1

1


 $\mathbf{2}$

	D	D
74	PROBABILITY WITH COMBINATORICS –	PROBABILITY WITH COMBINATIONS
Combinatorics		NORMANHURST BOYS' HIGH SCHOOL

Section 7

The Pigeonhole Principle

76

 Up and Atom - Pigeonhole Principle and applications 7.2 Example 94 If 11 pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeons. If pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeons. If there are pigeonholes, then the least number of pigeons that will guarantee that there is at least one pigeonhole with at least pigeons is 71. (Pender et al., 2019) Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. 7.2.1 Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. Fample 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. (a) If a shopkeeper knows 200 people from these blocks, explain why he must know 	
 Example 94 If 11 pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeons. If pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeonholes, there will be at least pigeonhole with at least pigeonholes, then the least number of pigeons that will guarantee that there is at least one pigeonhole with at least pigeons is 71. Example 95 (Pender et al., 2019) Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. Important note: As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 Example 94 If 11 pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeons. If pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeonhole with at least pigeonholes, then the least number of pigeons that will guarantee that there is at least one pigeonhole with at least pigeons is 71. Example 95 (Pender et al., 2019) Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. Important note As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 If 11 pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeons. If pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeonholes, there will be at least pigeonhole with at least pigeonholes, then the least number of pigeons that will guarantee that there is at least one pigeonhole with at least pigeons is 71. Example 95 (Pender et al., 2019) Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. Important note As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	 :
 at least pigeons. If pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeons. If there are pigeonholes, then the least number of pigeons that will guarantee that there is at least one pigeonhole with at least pigeons is 71. Example 95 (Pender et al., 2019) Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. 	
 If pigeons fly into 10 pigeonholes, there will be at least pigeonhole with at least pigeons. If there are pigeonholes, then the least number of pigeons that will guarantee that there is at least one pigeonhole with at least pigeons is 71. Example 95 (Pender et al., 2019) Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. T.2.1 Division with remainder As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 pigeonhole with at least pigeons. If there are pigeonholes, then the least number of pigeons that will guarantee that there is at least one pigeonhole with at least pigeons is 71. Example 95 (Pender et al., 2019) Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. Important note As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 guarantee that there is at least one pigeonhole with at least pigeons is 71. Example 95 (Pender et al., 2019) Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. Explain how remainder Important note As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 (Pender et al., 2019) 1. Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. 2. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. 7.2.1 Division with remainder () Important note As the number of pigeonholes increases, it's useful to find the from division. () Example 96 () (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 (Pender et al., 2019) 1. Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. 2. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. 7.2.1 Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 (Pender et al., 2019) 1. Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. 2. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. 7.2.1 Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 (Pender et al., 2019) 1. Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. 2. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. 7.2.1 Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 (Pender et al., 2019) 1. Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. 2. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. 7.2.1 Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 (Pender et al., 2019) 1. Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. 2. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. 7.2.1 Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 Seventy guests sit at a restaurant with 23 tables. Prove that there must be at least one table with at least four guests. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 least one table with at least four guests. 2. Explain how many guests there must be to guarantee at least one of the 23 tables has at least 11 guests. 7.2.1 Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 tables has at least 11 guests. 7.2.1 Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
 7.2.1 Division with remainder Important note As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks. 	
As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks.	
As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks.	
As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks.	
As the number of pigeonholes increases, it's useful to find the from division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks.	· · · · · · · · · · · · · · · · · · ·
from division. From division. Example 96 (Pender et al., 2019) A suburb has 15 large apartment blocks.	
(Pender et al., 2019) A suburb has 15 large apartment blocks.	
(Pender et al., 2019) A suburb has 15 large apartment blocks.	
(a) If a shopkeeper knows 200 people iron these blocks, explain why he must know	
at least 14 people from at least one block.	
(b) How many people from these blocks must he know in order to know at least 25 people from at least one block?	

77

K Laws/Results

Suppose n pigeons fly into d pigeonholes. Let

n = dq + r

where the remainder is $r = 0, 1, 2, \cdots, (d-1)$.

- If r = 0, there must be at least one pigeonhole with \dots pigeons.
- If r > 0, there must be at least one pigeonhole with pigeons.
- The least number of pigeons that will guarantee at least one pigeonhole with at least q + 1 pigeons is

Every person has fewer than 500 000 hairs on their head. Prove that in Sydney, with a population of more than 5 000 000, there are at least eleven people with exactly the same number of hairs on their heads.

Example 98

Combinatorics

Example 97

Vikram has 30 distinct ties. Every day, including weekends, he selects a tie at random to wear. How many successive dates are needed to guarantee that there is at least one day of the week on which he has worn the same tie on at least 6 occasions?

NORMANHURST BOYS' HIGH SCHOOL

Fifteen people come into a room, and there are many handshakes as they meet — no pair shakes hands twice. Prove that there will be at least two people who have made the same number of handshakes.

Example 100

How many odd numbers less than 20 must be chosen to guarantee that two of the chosen numbers add to 20?

```
NORMANHURST BOYS' HIGH SCHOOL
```

Example 101 [2023 CSSA Ext 1 Trial Q1] A bag contains a large number of red, green and blue marbles. Arlo will take out some marbles, without looking, and needs to be certain he will have at least four marbles of the same colour. What is the smallest number of marbles that he must take out to ensure this? Answer: (C) (\mathbf{A}) (B) 510 (D)13 4 (C)Example 102 [2020 Ext 1 HSC Q12] (2 marks) To complete a course, a student must choose and pass exactly three topics. There are eight topics from which to choose. Last year 400 students completed the course. Explain, using the pigeonhole principle, why at least eight students passed exactly the same three topics. Combinatorics NORMANHURST BOYS' HIGH SCHOOL

[2021 CSSA Ext 1 Trial Q10] There are 26 cards in a bag, each has a different letter of the alphabet written on them.

81

A game consists of drawing cards one at a time, without replacement, until two consecutive letters of the alphabet have been drawn. A and Z are not consecutive letters.

For example, if B is drawn first and M is drawn second, if the third card is either A, C, L or N the game would stop there as A and B, or B and C, or L and M, or M and N form a consecutive pair of letters. There would be 23 letters left in the bag.

What is the least number of cards that can be left in the bag at the end of the game?

															000						0					wer		;)	
÷	((A)	1	1				((B)	1	2				(C)		13				(I))	1					
			:		-		-					:		-			:												
			 												 	() 		((* * * * *		 				
																· · · · · · · · · · · · · · · · · · ·					•			•					
: ;			: :			: 									 							 		: ;	 				
: :			: :													 					•								
			: : :													• •													· · · · · · · · · · · · · · · · · · ·
: :					÷							••••			 	: : :						 		: : :	 	···· ;		•••••	
: 							 									· · · · · · · · · · · · · · · · · · ·					•			• • • • • • •					
: : :			: : :	•••••			· · ·		- 						 							 			 				
: : :												••••																	
	••••			÷			· · · · · ·					•••••••••••••••••••••••••••••••••••••••	••••		 			(* • • • • •		••••		 	(* * * * * :		 		••••	•••••	
																· · · · · · · · · · · · · · · · · · ·													
										• • • • •		••••••			 		÷					 			 				••••
			:				•					••••••				••••••••••••••••••••••••••••••••••••••	:				•			 					
) 															 									· · · · · ·					
			*													* * *					•			•					
			:												 				: : 			 		: : :	 			,	
																•													
															 	· · · · · · · · · · · · · · · · · · ·						 			 				
			•													• • •													
					÷										 							 		: 	 				
			1		Fur	the	er o	exe	rci	ses					 	: : : : : :	÷					 		:	 				<u>.</u>
]	Ex		4H																									
					1-20)																							
			•	Q-	r-∠(,																							
												•••••••	••••		 							 			 			•••••	
												:			 	•						 			 				
N	ORM	MAN	ЧНU	RST	BOY	S' Н	IGH	SCHO	OL						 	· · · · · · · · · · · · · · · · · · ·						 			 • • • •	(Сомв	INAT	DRICS
																· · · · · · · · · · · · · · · · · · ·					•			•					

7.2.2 Additional questions

Source: Haese, Haese, and Humphries (2015, Ex 1G)

- 1. Show that in any group of 13 people there will be two or more people who were born in the same month.
- 2. Seven darts are thrown onto a circular dart board of radius 10 cm. Assuming that all the darts land on the dartboard, so there are two darts which are at most 10 cm apart.
- **3.** 17 points are randomly placed in an equilateral triangle with side length 10 cm. Show that at least two of the points are at most 2.5 cm away from each other.
- 4. 10 children attended a party and each child received at least one of 50 party prizes. Show that there were at least two children who received the same number of prizes.
- 5. What is the minimum number of people needed to ensure that at least two of them have the same birthday, not including the year of birth?
- 6. There are 8 black socks and 14 white socks in a drawer. Calculate the minimum number of socks needed to be selected from the drawer without looking to ensure that
 - (a) a spare of the same colour is drawn
 - (b) two different coloured socks are drawn.
- 7. Prove that for every 27 word sequence in the Australian Constitution, at least two words will start with the same letter.
- 8. Prove that if 6 distinct numbers from the integers 1 to 10 are chosen, then there will be two of them which sum to 11.
- **9.** Prove that if 11 integers are chosen at random, then at least two of them will have the same units digit.
- **10.** Prove that any cocktail party with two or more people, there must be at least 2 people who have the same number of acquaintances at the party.

Hint: consider the separate cases where

- (a) everyone has at least one acquaintance at the party
- (b) where someone has no acquaintance at the party.

Section 8

Past HSC Questions

8.1 2012 Extension 1 HSC

Question 11

(f) i. Use the binomial theorem to find an expression for the constant term **2** in the expansion of $\left(2x^3 - \frac{1}{x}\right)^{12}$.

ii. For what values of n does $\left(2x^3 - \frac{1}{x}\right)^n$ have a non-zero constant term? **1**

1

8.2 2019 Extension 1 HSC

Question 13

(b) In the expansion of $(5x+2)^{20}$, the coefficients of x^k and x^{k+1} are equal. 3

What is the value of k?

8.3 2017 Extension 1 HSC

- 9. When expanded, which expression has a non-zero constant term?
 - (A) $\left(x + \frac{1}{x^2}\right)^7$ (C) $\left(x^3 + \frac{1}{x^4}\right)^7$ (B) $\left(x^2 + \frac{1}{x^3}\right)^7$ (D) $\left(x^4 + \frac{1}{x^5}\right)^7$

8.4 2018 Extension 1 HSC

Question 14

(b) By considering the expansions of $(1 + (1 + x))^n$ and $(2 + x)^n$, show that

$$\binom{n}{r}\binom{r}{r} + \binom{n}{r+1}\binom{r+1}{r} + \binom{n}{r+2}\binom{r+2}{r} + \dots + \binom{n}{n}\binom{n}{r} = \binom{n}{r}2^{n-r}$$

(c) There are 23 people who have applied to be selected for a committee of 4 people.

The selection process starts with Selector A choosing a group of at least 4 people from the 23 people who applied.

Selector B then chooses the 4 people to be on the committee from the group Selector A has chosen.

In how many ways could this selection process be carried out?

8.5 2017 Extension 1 HSC

Question 13

(b) Let n be a positive EVEN integer.

i. Show that
$$(1+x)^n + (1-x)^n = 2\left[\binom{n}{0} + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n\right].$$
 2

$$n\left[(1+x)^{n-1} - (1-x)^{n-1}\right] = 2\left[2\binom{n}{2}x + 4\binom{n}{4}x^3 + \dots + n\binom{n}{n}x^{n-1}\right].$$

iii. Hence show that
$$\binom{n}{2} + 2\binom{n}{4} + 3\binom{n}{6} + \dots + \frac{n}{2}\binom{n}{n} = n2^{n-3}$$
. 2

8.6 1991 Extension 1 HSC

Question 4

(c) Containers are coded by different arrangements of coloured dots in a row. The colours used are red, white, and blue.

In an arrangement, at most three of the dots are red, at most two of the dots are white, and at most one is blue.

- i. Find the number of different codes possible if six dots are used.
- ii. On some containers only five dots are used. Find the number of different codes possible in this case. Justify your answer.

 $\mathbf{2}$

1

8.7 1993 Extension 1 HSC

Question 4

(b) Five travellers arrive in a town where there are five hotels.

- i. How many different accommodation arrangements are there if there are no restrictions on where the travellers stay?
- ii. How many different accommodation arrangements are there if each traveller stays at a different hotel?
- iii. Suppose two of the travellers are husband and wife and must go to the same hotel. How many different accommodation arrangements are there if the other three can go to any of the *other* hotels?

8.8 **1992 Extension 1 HSC**

Question 6

- (b) A total of five players is selected at random from four sporting teams. Each of the teams consists of ten players numbered from **1** to **10**.
 - i. What is the probability that of the five selected players, three are numbered '6' and two are numbered '8'?
 - ii. What is the probability that the five selected players contain at least four players from the same team?

8.9 2000 Extension 1 HSC

Question 6

- (b) A standard pack of 52 cards consists of 13 cards of each of the four suits: spades, hearts, clubs and diamonds.
 - i. In how many ways can six cards be selected without replacement so that exactly two are spades and four are clubs? (Assume that the order of selection of the six cards is not important.)
 - ii. In how many ways can six cards be selected without replacement if at least five must be of the same suit? (Assume that the order of selection of the six cards is not important.)

4

Part III

Legacy syllabus content

Important note

Previously in the legacy syllabuses, and not explicitly stated. This section would be classified as the \swarrow Enrichment exercise in Pender et al. (2019).

Content here may either be:

- $\bullet\,$ Vaguely resembling questions which may be within scope of the new syllabuses.
- Within the scope of the new syllabuses but deemed too difficult.
- Requiring additional content to be covered before questions can be attempted, such as the *Integration* or *Induction* topics.

Legacy textbook references from Pender, Sadler, Shea, and Ward (2000) remain for reference.

Section A

The Binomial Theorem

A.1 Integration

Important note

A Requires a future topic (*Integration*) to be completed.

- If the result to be proven involves binomial coefficients $\binom{n}{k}$ divided by their k + 1 value, integrate both sides of the expansion of $(1 + x)^n$.
- Beware of the invisible, arbitrary of integration!
- Find the value of C by substituting x = 0.
- Prove the required identity by substituting another value of x.

From that $\sum_{r=0}^{n} \frac{1}{r+1} \binom{n}{r} = \frac{2^{n+1}-1}{n+1}.$

[1992 3U HSC Q6] Consider the binomial expansion $\binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{r}x^r + \dots + \binom{n}{n}x^n = (1+x)^n$ (i) Show that $1 - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = 0.$ (ii) Show that $1 - \frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} - \dots + (-1)^n \frac{1}{n+1}\binom{n}{n} = \frac{1}{n+1}.$

[2002 Ext 1 Q7] A The coefficient of x^k in the expansion of $(1 + x)^n$, $n \in \mathbb{N}$ is denoted by c_k , i.e. $c_k = \binom{n}{k}$. (i) Show that $c_0 + 2c_1 + 3c_2 + \dots + (n+1)c_n = (n+2)2^{n-1}$. (ii) Find the sum $\frac{c_0}{1 \times 2} - \frac{c_1}{2 \times 3} + \frac{c_2}{3 \times 4} - \dots + (-1)^n \frac{c_n}{(n+1)(n+2)}$ **3**

Write your answer as a simple expression in terms of n.

A.2 Equate coefficients

Important note

A May be too difficult for the scope of the new courses

Example 107

[2013 Ext 1 HSC Q14]

(i) Write down the coefficient of x^{2n} in the expansion of $(1+x)^{4n}$.

(ii) Show that
$$(1+x^2+2x)^{2n} = \sum_{k=0}^{2n} {\binom{2n}{k}} x^{2n-k} (x+2)^{2n-k}$$
. 2

(iii) It is known that

$$x^{2n-k} (x+2)^{2n-k} = \binom{2n-k}{0} 2^{2n-k} x^{2n-k} + \binom{2n-k}{1} 2^{2n-k-1} x^{2n-k+1} + \dots + \binom{2n-k}{2n-k} 2^0 x^{4n-2k}$$

(Do NOT prove this)

Show that

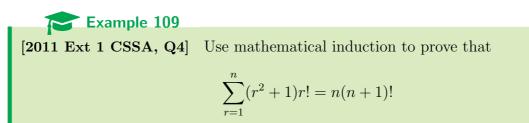
$$\binom{4n}{2n} = \sum_{k=0}^{n} 2^{2n-2k} \binom{2n}{k} \binom{2n-k}{k}$$

3

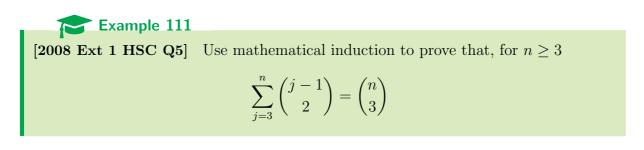
1

[2004 Ext 1 HSC Q7(b)] A A A	
(i) Show that for all positive integers n ,	1
$x\left[(1+x)^{n-1} + (1+x)^{n-2} + \dots + (1+x)^2 + (1+x) + 1\right] = (1+x)^n - 1$	
(ii) Hence show that for $1 \le k \le n$,	1
$\binom{n-1}{k-1} + \binom{n-2}{k-1} + \binom{n-3}{k-1} + \dots + \binom{k-1}{k-1} = \binom{n}{k}$	
(iii) Show that $n\binom{n-1}{k} = (k+1)\binom{n}{k+1}$	1
(iv) By differentiating both sides of the identity in (i), show that for $1 \le k \le n$	3

$$(n-1)\binom{n-2}{k-1} + (n-2)\binom{n-3}{k-1} + \dots + k\binom{k-1}{k-1} = k\binom{n}{k+1}$$


A.3 Induction

Important note


A Requires a future topic (*Induction*) to be completed.

Generally of no great difficulty as long as the principle of induction is followed – i.e. treat mathematical expression as series of propositions/statements P(n) that need to be proven true over \mathbb{N} .

- Base case P(1)
- Inductive step: assume P(k) is true, and then examine P(k+1) by using P(k) to result in the new expression.

[2008 Ext 1 CSSA, Q4] Prove by mathematical induction that $\sum_{r=1}^{n} r \times r! = (n+1)! - 1$

Further exercises

Ex 5F

• Q1-13 odd #

Combinatorics

Section B

Combinatorics

B.1 (x2) Harder 3 Unit problems involving probability/combinatorics

A May be too difficult for the scope of the new courses

Example 112

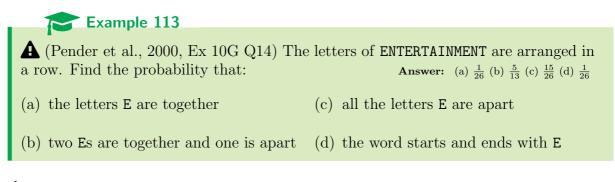
Seven letter words are formed using the letters of UNUSUAL. One of these words is selected at random. Find the probability that the word: Answer: (a) $\frac{1}{7}$ (b) $\frac{1}{7}$ (c) $\frac{2}{35}$ (d) $\frac{2}{7}$ (a) began and ended with a U

- (b) had three Us together
- (c) had three Us at beginning or at the end
- (d) \clubsuit had none of the Us together

E Steps

(d) had none of the Us together

Question 1 Enumerating possibilities too tedious. Try:


Question 2 Draw positions where U can go:

____ N ____ S ____ A ____ L ____

Question 4 The number of ways to permute the unique letters $\tt N, S, A$ and L:

Question 5 Use multiplication principle: total number of ways is

Question 6 Find probability:



A Use combination theory to show possible location of the Es.

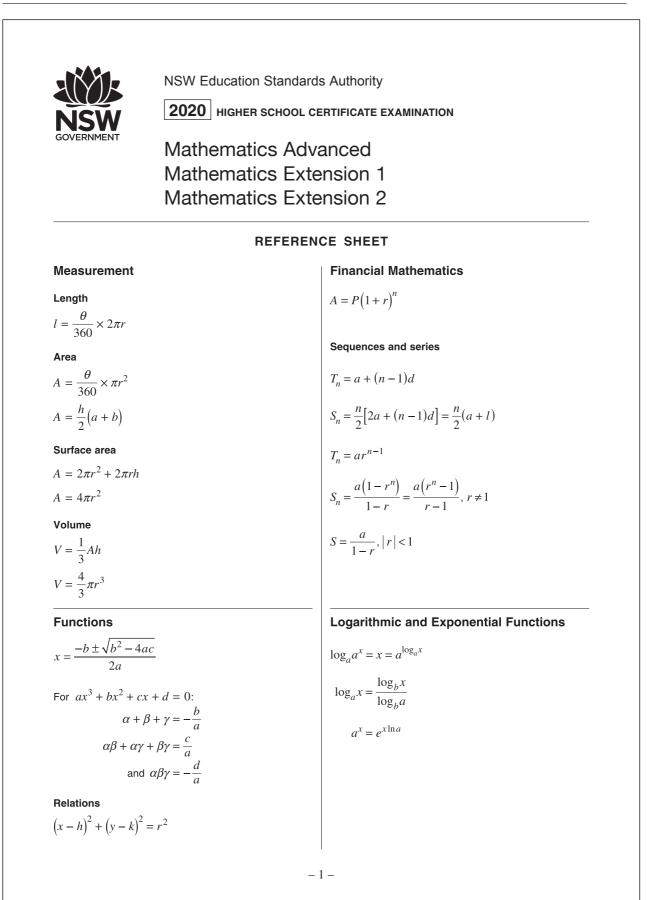
Example 1	14
 (x2) (Lee, 2006, Ex 8 (a) How many words of the word CALC 	are possible using five letters which are selected from the lett
(b) If a word is select word contains:	ted at random from these words, find the probability that
p repeated letters	iv two Cs that remain together
all four vowels	v no vowels
vo Cs	
^{<i>a</i>} Error in text shows $\frac{2}{73}$	
E Steps	
(a) Consider cases w	ith repeated letters:
Question 1 0 repea	ted letters:
• are	unique letters that are unique to choose from, of which are required.
	-Exclude duplicate letters
•Pe:	rmutations:
Question 2 1 repea	ted letter:
•Nu bu	umber of combinations from U, T, O, R plus other repeatal t non repeated letters:
●Fre	om repeatable letters C, A, L: \dots ways of choosing beated letter.
•Pe	rmute:
•To	tal # of words: \dots
Question 3 2 repea	ted letters:
	umber of combinations from U, T, O, R plus other repeatal t non repeated letters:
•Fre	om repeatable letters C, A, L: \dots ways of choosing beated letter.
-	
	rmute:

[1997 4U] In a game, two players take turns at drawing, and immediately replacing, a marble from a bag containing two green and three red marbles. The game is won by player A drawing a green marble, or player B drawing a red marble. Player A draws first.

Find the probability that:	
(i) A wins on her first draw;	1
(ii) B wins on her first draw;	1
(iii) A wins in less than four of her turns;	1
(iv) A wins eventually.	2

(ii) The table is extended to have
$$n$$
 rows and q columns. There are nq counters, where q are identical black counters and the remainder are identical white counters. The counters are placed randomly on the table with one counter in each cell.

Show that
$$P_n = \frac{n^q}{\binom{nq}{q}}$$
.


(iii) Find $\lim_{n \to \infty} P_n$.

2

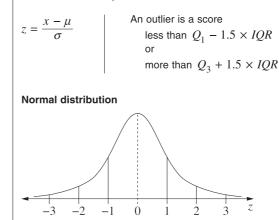
 $\mathbf{2}$

 $\mathbf{2}$

NESA Reference Sheet – calculus based courses

Trigonometric Functions

 $\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$ $A = \frac{1}{2}ab\sin C$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\frac{\sqrt{2}}{45^{\circ}}$ $C^{2} = a^{2} + b^{2} - 2ab\cos C$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$ $l = r\theta$ $A = \frac{1}{2}r^{2}\theta$ $\frac{60^{\circ}}{1}$


Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between -3 and 3

$$E(X) = \mu$$

 $\sqrt{3}$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {}^{n}C_{r}p^{r}(1-p)^{n-r}$$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^{x}(1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

- 2 -

Differential Calculus		Integral Calculus
Function	Derivative	$\int f'(x) [f(x)]^n dx = \frac{1}{n+1} [f(x)]^{n+1} + c$
$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int \frac{1}{n+1} \frac{1}{n+1} \frac{1}{n+1} \frac{1}{n+1}$ where $n \neq -1$
y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$
y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$
$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$
$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$
$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$
$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int f'(x) = \frac{1}{1} \int f(x) dx$
$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$
$y = \sin^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$
$y = \cos^{-1} f(x)$	$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$	$\int_{a}^{b} f(x) dx$
$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	$\approx \frac{b-a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$ where $a = x_0$ and $b = x_n$
	- 3	3 -

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \begin{array}{c} \underline{u} \right| &= \left| \begin{array}{c} x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \\ \underline{u} \cdot \underline{v} &= \left| \begin{array}{c} \underline{u} \right| \right| \underline{v} \left| \cos \theta = x_1 x_2 + y_1 y_2 \right|, \\ \\ \\ \text{where } \begin{array}{c} \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \\ \\ \\ \text{and } \begin{array}{c} \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \end{array} \end{split}$$

 $r_{\tilde{u}} = a + \lambda b_{\tilde{u}}$

Complex Numbers

 $z = a + ib = r(\cos\theta + i\sin\theta)$ $= re^{i\theta}$ $\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

© 2018 NSW Education Standards Authority

References

- Haese, M., Haese, S., & Humphries, M. (2015). Mathematics for Australia 11 Specialist Mathematics (2nd ed.). Haese Mathematics.
- Jones, S. B., & Couchman, K. E. (1983). *3 Unit Mathematics* (Vol. 2). Addison Wesley Longman Australia.
- Lee, T. (2006). Advanced Mathematics: A complete HSC Mathematics Extension 2 Course (2nd ed.). Terry Lee Enterprise.
- Pender, W., Sadler, D., Shea, J., & Ward, D. (2000). Cambridge Mathematics 3 Unit Year 12 (1st ed.). Cambridge University Press.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019). CambridgeMATHS Stage 6 Mathematics Extension 1 Year 11 (1st ed.). Cambridge Education.